Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Anat ; 220(5): 447-53, 2012 May.
Article in English | MEDLINE | ID: mdl-22414238

ABSTRACT

Salivary secretion is principally regulated by autonomic nerves. However, recent evidence from in vivo animal experiments suggests that gastrointestinal peptide hormones can also influence saliva production. The aim of the present study was to define the secretagogue activity of the gastrin-analogue pentagastrin in human salivary glands. For this purpose, parotid tissues were exposed to pentagastrin in vitro. Morphological techniques were used to evaluate modifications to serous acinar cells associated with secretion. Using a variant of the osmium maceration method, high resolution scanning electron microscopy allowed assessment of the morphology of the cytoplasmic aspect of the plasmalemma to demonstrate secretory activity. To quantify responses to pentagastrin, we recorded morphometric data on microvilli, microbuds, and protrusions. Dose-dependent morphological changes were observed, whereas protein concentration increased in the incubate. The use of selective receptor antagonists showed pentagastrin to act principally via cholecystokinin-A receptors. The morphological responses observed following exposure to pentagastrin differed from those elicited following exposure to the pan-muscarinic agonist carbachol. This study provides the first demonstration of a direct secretory action of gastrointestinal peptides on salivary glands in humans.


Subject(s)
Gastrointestinal Agents/pharmacology , Parotid Gland/drug effects , Pentagastrin/pharmacology , Acinar Cells/cytology , Acinar Cells/drug effects , Hormone Antagonists/pharmacology , Humans , Microscopy, Electron , Microvilli/drug effects , Parotid Gland/anatomy & histology , Parotid Gland/metabolism , Proglumide/analogs & derivatives , Proglumide/pharmacology
2.
J Anat ; 216(5): 572-6, 2010 May.
Article in English | MEDLINE | ID: mdl-20345857

ABSTRACT

In this study, which supplements a recent article on the localization of statherin in human major salivary glands, we investigated the intracellular distribution of this peptide in minor salivary glands by immunogold cytochemistry at the electron microscopy level. In the lingual serous glands of von Ebner, gold particles were found in serous granules of all secreting cells, indicating that statherin is released through granule exocytosis. In buccal and labial glands, mostly composed of mucous tubuli, statherin reactivity was detected in the serous element, which represents only a small population of the glandular parenchyma. In these serous cells, however, statherin labeling was absent in secretory granules and restricted to small cytoplasmic vesicles near or partially fused with granules. Vesicle labeling could be related to the occurrence of an alternative secretory pathway for statherin in buccal and labial glands.


Subject(s)
Immunohistochemistry , Microscopy, Immunoelectron , Salivary Glands, Minor/chemistry , Salivary Proteins and Peptides/analysis , Aged , Female , Humans , Male , Middle Aged , Salivary Glands, Minor/cytology
3.
J Microbiol ; 47(3): 260-4, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19557342

ABSTRACT

The fine structure of Candida albicans has been repeatedly described by transmission electron microscopy, whereas studies by high-resolution scanning electron microscopy (HRSEM) are rare and devoted solely to the study of its external morphology. This report describes the results of an HRSEM study on C. albicans carried out by an osmium maceration protocol modified to better retain the structural characteristics of this yeast. Thus, we visualized various intracellular structures including invaginations of cell membrane (plasmalemmasomes), nuclear envelope, mitochondria, the vacuolar system, and two additional structures that might represent a form of endoplasmic reticulum and the Golgi apparatus. The present investigation, which for the first time shows the organelles of C. albicans at the 3D level, may lead to a better understanding of its cell physiology.


Subject(s)
Candida albicans/ultrastructure , Organelles/ultrastructure , Microscopy, Electron, Scanning
4.
Microsc Res Tech ; 70(7): 607-16, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17279506

ABSTRACT

Despite the numerous studies performed in an attempt to clarify the issue, the mechanism of action of salivary histatins remains unclear. The aim of the present study was to correlate histatin-induced morphological changes in Candida albicans by fluorescence microscopy (FM), transmission electron microscopy (TEM), and high resolution scanning electron microscopy (HRSEM). Each of the fluorescent dyes used by FM (i.e., tetramethylrhodamine methyl ester perchlorate for mitochondrial potential, Lysotracker for lysosome acidic compartment, and 4',6-diamino-2-phenylindole dihydrochloride for DNA) exhibited a specific staining in control cells. Following histatin treatment, we observed a recurring staining pattern, corresponding to fluorescence concentration along the cell periphery, suggesting a loss of dye specificity. To assess histatin-induced cytoplasmic modifications, ultrastructural analysis was then carried out. After treatments with histatins, TEM revealed characteristic intracellular modifications including: vacuole overgrowth, nuclear disappearance, loss of organelle identity, as well as the appearance of electron-dense membranes, likely of mitochondrial origin. Additionally, structures resembling autophagosomes were occasionally observed. By HRSEM, mitochondrial swelling was invariably the first sign of a histatin-induced effect. Other modifications included intracellular membrane disarrangement, organelles in disarray, and a large central cavity with deformed bodies displaced to the cell periphery, similar to what was detected by TEM. In summary, our study illustrates the occurrence of ultrastructural modifications following administration of histatins. Observations made with FM, TEM, and HRSEM provided different views of the same signs, demonstrating a definite action of histatins on C. albicans morphology. The possible functional meanings of these morphological results is discussed in light of the most recent biochemical data on histatin fungicidal activity.


Subject(s)
Candida albicans/drug effects , Candida albicans/ultrastructure , Mitochondria/ultrastructure , Proteins/pharmacology , Salivary Proteins and Peptides/pharmacology , Candida albicans/cytology , Fluorescent Dyes , Histatins , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Mitochondria/drug effects , Saliva
5.
Arch Oral Biol ; 51(11): 967-73, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16859632

ABSTRACT

OBJECTIVE: Human saliva contains a family of low molecular weight histidine-rich proteins, named histatins, characterised by bactericidal and fungicidal activities in vitro against several microbial pathogens, such as Streptococcus mutans and Candida albicans. They represent a major component of an innate host non-immune defense system. In an earlier study we described the distribution of histatins in the glandular parenchyma of human major salivary glands, confirming that all human major salivary glands are involved in the secretion of histatins into saliva. In the present study we determined the expression and localisation of histatins in human posterior deep lingual glands (von Ebner's glands) by means of immunoelectron microscopy. DESIGN: Thin sections of normal human salivary glands, embedded in Epon resin, were incubated with rabbit polyclonal antibodies specific for human histatins and successively with a gold conjugated goat anti-rabbit IgG used as secondary antibody. Sections incubated with medium devoid of primary antibody or containing non-immune serum were used as controls. RESULTS: The serous secreting cells represented the main source of histatins in the glandular parenchyma of von Ebner's glands. At the electron microscopic level, labeling was associated with rough endoplasmic reticulum, Golgi complex and secretory granules that represented the main cytoplasmic site of histatin localisation. However, variability in the intensity of labeling was observed among adjacent cells. CONCLUSIONS: The present results show for the first time that human von Ebner's glands produce and represent a significant source of histatins, supporting the hypothesis of their important role in preventing microbial assaults on the tissues in the posterior region of the tongue and in the circumvallate papillae.


Subject(s)
Proteins/analysis , Salivary Glands, Minor/chemistry , Salivary Proteins and Peptides/analysis , Endoplasmic Reticulum/chemistry , Female , Golgi Apparatus/chemistry , Humans , Immunohistochemistry/methods , Male , Microscopy, Immunoelectron/methods , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...