Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(40): e2117146119, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36161904

ABSTRACT

The long-term history of the Earth-Moon system as reconstructed from the geological record remains unclear when based on fossil growth bands and tidal laminations. A possibly more robust method is provided by the sedimentary record of Milankovitch cycles (climatic precession, obliquity, and orbital eccentricity), whose relative ratios in periodicity change over time as a function of a decreasing Earth spin rate and increasing lunar distance. However, for the critical older portion of Earth's history where information on Earth-Moon dynamics is sparse, suitable sedimentary successions in which these cycles are recorded remain largely unknown, leaving this method unexplored. Here we present results of cyclostratigraphic analysis and high-precision U-Pb zircon dating of the lower Paleoproterozoic Joffre Member of the Brockman Iron Formation, NW Australia, providing evidence for Milankovitch forcing of regular lithological alternations related to Earth's climatic precession and orbital eccentricity cycles. Combining visual and statistical tools to determine their hierarchical relation, we estimate an astronomical precession frequency of 108.6 ± 8.5 arcsec/y, corresponding to an Earth-Moon distance of 321,800 ± 6,500 km and a daylength of 16.9 ± 0.2 h at 2.46 Ga. With this robust cyclostratigraphic approach, we extend the oldest reliable datum for the lunar recession history by more than 1 billion years and provide a critical reference point for future modeling and geological investigation of Precambrian Earth-Moon system evolution.

2.
Nat Geosci ; 12(5): 369-374, 2019 May.
Article in English | MEDLINE | ID: mdl-31105765

ABSTRACT

Astronomical forcing associated with Earth's orbital and inclination parameters ("Milankovitch" forcing) exerts a major control on climate as recorded in the sedimentary rock record, but its influence in deep time is largely unknown. Banded iron formations, iron-rich marine sediments older than 1.8 billion years, offer unique insight into the early Earth's environment. Their origin and distinctive layering have been explained by various mechanisms, including hydrothermal plume activity, the redox evolution of the oceans, microbial and diagenetic processes, sea level fluctuations, and seasonal or tidal forcing. However, their potential link to past climate oscillations remains unexplored. Here we use cyclostratigraphic analysis combined with high-precision uranium-lead dating to investigate the potential influence of Milankovitch forcing on their deposition. Field exposures of the 2.48-billion-year-old Kuruman Banded Iron Formation reveal a well-defined hierarchical cycle pattern in weathering profile that is laterally continuous over at least 250 kilometres. The isotopic ages constrain the sedimentation rate at 10 m/Myr and link the observed cycles to known eccentricity oscillations with periods of 405 thousand and about 1.4 to 1.6 million years. We conclude that long-period, Milankovitch-forced climate cycles exerted a primary control on large-scale compositional variations in banded iron formations.

SELECTION OF CITATIONS
SEARCH DETAIL
...