Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(21): 213601, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37295084

ABSTRACT

A quantum repeater node is presented based on trapped ions that act as single-photon emitters, quantum memories, and an elementary quantum processor. The node's ability to establish entanglement across two 25-km-long optical fibers independently, then to swap that entanglement efficiently to extend it over both fibers, is demonstrated. The resultant entanglement is established between telecom-wavelength photons at either end of the 50 km channel. Finally, the system improvements to allow for repeater-node chains to establish stored entanglement over 800 km at hertz rates are calculated, revealing a near-term path to distributed networks of entangled sensors, atomic clocks, and quantum processors.


Subject(s)
Photons , Ions
2.
Phys Rev Lett ; 130(5): 050803, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36800448

ABSTRACT

We report on an elementary quantum network of two atomic ions separated by 230 m. The ions are trapped in different buildings and connected with 520(2) m of optical fiber. At each network node, the electronic state of an ion is entangled with the polarization state of a single cavity photon; subsequent to interference of the photons at a beam splitter, photon detection heralds entanglement between the two ions. Fidelities of up to (88.0+2.2-4.7)% are achieved with respect to a maximally entangled Bell state, with a success probability of 4×10^{-5}. We analyze the routes to improve these metrics, paving the way for long-distance networks of entangled quantum processors.

3.
Phys Rev Lett ; 119(8): 080501, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28952773

ABSTRACT

The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.

4.
Appl Phys B ; 123(9): 228, 2017.
Article in English | MEDLINE | ID: mdl-32009744

ABSTRACT

We demonstrate polarisation-preserving frequency conversion of single-photon-level light at 854 nm, resonant with a trapped-ion transition and qubit, to the 1550-nm telecom C band. A total photon in / fiber-coupled photon out efficiency of ∼ 30% is achieved, for a free-running photon noise rate of ∼ 60 Hz. This performance would enable telecom conversion of 854 nm polarisation qubits, produced in existing trapped-ion systems, with a signal-to-noise ratio greater than 1. In combination with near-future trapped-ion systems, our converter would enable the observation of entanglement between an ion and a photon that has travelled more than 100 km in optical fiber: three orders of magnitude further than the state-of-the-art.

5.
Phys Rev Lett ; 115(10): 100501, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26382670

ABSTRACT

The static and dynamic properties of many-body quantum systems are often well described by collective excitations, known as quasiparticles. Engineered quantum systems offer the opportunity to study such emergent phenomena in a precisely controlled and otherwise inaccessible way. We present a spectroscopic technique to study artificial quantum matter and use it for characterizing quasiparticles in a many-body system of trapped atomic ions. Our approach is to excite combinations of the system's fundamental quasiparticle eigenmodes, given by delocalized spin waves. By observing the dynamical response to superpositions of such eigenmodes, we extract the system dispersion relation, magnetic order, and even detect signatures of quasiparticle interactions. Our technique is not limited to trapped ions, and it is suitable for verifying quantum simulators by tuning them into regimes where the collective excitations have a simple form.

6.
Nature ; 511(7508): 202-5, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25008526

ABSTRACT

The key to explaining and controlling a range of quantum phenomena is to study how information propagates around many-body systems. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behaviour of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system's interactions. Here we report quasiparticle dynamics observed in a quantum many-body system of trapped atomic ions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-light-cone picture does not apply. Our results will enable experimental studies of a range of quantum phenomena, including transport, thermalization, localization and entanglement growth, and represent a first step towards a new quantum-optic regime of engineered quasiparticles with tunable nonlinear interactions.

7.
Phys Rev Lett ; 112(10): 100403, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24679272

ABSTRACT

We report on the experimental violation of multipartite Bell inequalities by entangled states of trapped ions. First, we consider resource states for measurement-based quantum computation of between 3 and 7 ions and show that all strongly violate a Bell-type inequality for graph states, where the criterion for violation is a sufficiently high fidelity. Second, we analyze Greenberger-Horne-Zeilinger states of up to 14 ions generated in a previous experiment using stronger Mermin-Klyshko inequalities, and show that in this case the violation of local realism increases exponentially with system size. These experiments represent a violation of multipartite Bell-type inequalities of deterministically prepared entangled states. In addition, the detection loophole is closed.

8.
Phys Rev Lett ; 111(21): 210501, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24313469

ABSTRACT

Measurement-based quantum computation represents a powerful and flexible framework for quantum information processing, based on the notion of entangled quantum states as computational resources. The most prominent application is the one-way quantum computer, with the cluster state as its universal resource. Here we demonstrate the principles of measurement-based quantum computation using deterministically generated cluster states, in a system of trapped calcium ions. First we implement a universal set of operations for quantum computing. Second we demonstrate a family of measurement-based quantum error correction codes and show their improved performance as the code length is increased. The methods presented can be directly scaled up to generate graph states of several tens of qubits.

9.
Phys Rev Lett ; 111(10): 100504, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-25166643

ABSTRACT

Quantum systems in mixed states can be unentangled and yet still nonclassically correlated. These correlations can be quantified by the quantum discord and might provide a resource for quantum information processing tasks. By precisely controlling the interaction of two ionic qubits with their environment, we investigate the capability of noise to generate discord. Firstly, we show that noise acting on only one quantum system can generate discord between two. States generated in this way are restricted in terms of the rank of their correlation matrix. Secondly, we show that classically correlated noise processes are capable of generating a much broader range of discordant states with correlation matrices of any rank. Our results show that noise processes prevalent in many physical systems can automatically generate nonclassical correlations and highlight fundamental differences between discord and entanglement.

10.
Science ; 334(6052): 57-61, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21885735

ABSTRACT

A digital quantum simulator is an envisioned quantum device that can be programmed to efficiently simulate any other local system. We demonstrate and investigate the digital approach to quantum simulation in a system of trapped ions. With sequences of up to 100 gates and 6 qubits, the full time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally present in our simulator are accurately reproduced, and quantitative bounds are provided for the overall simulation quality. Our results demonstrate the key principles of digital quantum simulation and provide evidence that the level of control required for a full-scale device is within reach.

11.
Phys Rev Lett ; 106(6): 060503, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21405450

ABSTRACT

We report on quantum simulations of relativistic scattering dynamics using trapped ions. The simulated state of a scattering particle is encoded in both the electronic and vibrational state of an ion, representing the discrete and continuous components of relativistic wave functions. Multiple laser fields and an auxiliary ion simulate the dynamics generated by the Dirac equation in the presence of a scattering potential. Measurement and reconstruction of the particle wave packet enables a frame-by-frame visualization of the scattering processes. By precisely engineering a range of external potentials we are able to simulate text book relativistic scattering experiments and study Klein tunneling in an analogue quantum simulator. We describe extensions to solve problems that are beyond current classical computing capabilities.

12.
Proc Natl Acad Sci U S A ; 108(4): 1256-61, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21220296

ABSTRACT

By weakly measuring the polarization of a photon between two strong polarization measurements, we experimentally investigate the correlation between the appearance of anomalous values in quantum weak measurements and the violation of realism and nonintrusiveness of measurements. A quantitative formulation of the latter concept is expressed in terms of a Leggett-Garg inequality for the outcomes of subsequent measurements of an individual quantum system. We experimentally violate the Leggett-Garg inequality for several measurement strengths. Furthermore, we experimentally demonstrate that there is a one-to-one correlation between achieving strange weak values and violating the Leggett-Garg inequality.


Subject(s)
Photons , Quantum Theory , Algorithms , Models, Theoretical , Physical Phenomena
13.
Nat Chem ; 2(2): 106-11, 2010 Feb.
Article in English | MEDLINE | ID: mdl-21124400

ABSTRACT

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.


Subject(s)
Computers , Quantum Theory , Algorithms , Hydrogen/chemistry , Optical Phenomena
14.
Phys Rev Lett ; 104(15): 153602, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20481989

ABSTRACT

Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of optical elements required scales linearly with the number of steps. We measure walks with up to 6 steps and explore the quantum-to-classical transition by introducing tunable decoherence. Finally, we also investigate the effect of absorbing boundaries and show that decoherence significantly affects the probability of absorption.

15.
Phys Rev Lett ; 104(8): 080503, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20366921

ABSTRACT

A goal of the emerging field of quantum control is to develop methods for quantum technologies to function robustly in the presence of noise. Central issues are the fundamental limitations on the available information about quantum systems and the disturbance they suffer in the process of measurement. In the context of a simple quantum control scenario-the stabilization of nonorthogonal states of a qubit against dephasing-we experimentally explore the use of weak measurements in feedback control. We find that, despite the intrinsic difficultly of implementing them, weak measurements allow us to control the qubit better in practice than is even theoretically possible without them. Our work shows that these more general quantum measurements can play an important role for feedback control of quantum systems.

16.
Phys Rev Lett ; 101(20): 200501, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-19113321

ABSTRACT

Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

17.
Phys Rev Lett ; 100(6): 060504, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18352449

ABSTRACT

Quantum information carriers with higher dimension than the canonical qubit offer significant advantages. However, manipulating such systems is extremely difficult. We show how measurement-induced nonlinearities can dramatically extend the range of possible transforms on biphotonic qutrits-three-level quantum systems formed by the polarization of two photons in the same spatiotemporal mode. We fully characterize the biphoton-photon entanglement that underpins our technique, thereby realizing the first instance of qubit-qutrit entanglement. We discuss an extension of our technique to generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of quantum information.

18.
Phys Rev Lett ; 98(20): 203602, 2007 May 18.
Article in English | MEDLINE | ID: mdl-17677697

ABSTRACT

We demonstrate a Fock-state filter which is capable of preferentially blocking single photons over photon pairs. The large conditional nonlinearities are based on higher-order quantum interference, using linear optics, an ancilla photon, and measurement. We demonstrate that the filter acts coherently by using it to convert unentangled photon pairs to a path-entangled state. We quantify the degree of entanglement by transforming the path information to polarization information; applying quantum state tomography we measure a tangle of T=(20+/-9)%.

19.
Phys Rev Lett ; 99(25): 250505, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18233509

ABSTRACT

Shor's powerful quantum algorithm for factoring represents a major challenge in quantum computation. Here, we implement a compiled version in a photonic system. For the first time, we demonstrate the core processes, coherent control, and resultant entangled states required in a full-scale implementation. These are necessary steps on the path towards scalable quantum computing. Our results highlight that the algorithm performance is not the same as that of the underlying quantum circuit and stress the importance of developing techniques for characterizing quantum algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL
...