Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36978391

ABSTRACT

Background: Since disulfiram's discovery in the 1940s and its FDA approval for alcohol use disorder, other indications have been investigated. This review describes potential clinical applications, associated risks, and challenges. Methods: For this narrative review, a PubMed search was conducted for articles addressing in vivo studies of disulfiram with an emphasis on drug repurposing for the treatment of human diseases. The key search terms were "disulfiram" and "Antabuse". Animal studies and in vitro studies highlighting important mechanisms and safety issues were also included. Results: In total, 196 sources addressing our research focus spanning 1948-2022 were selected for inclusion. In addition to alcohol use disorder, emerging data support a potential role for disulfiram in the treatment of other addictions (e.g., cocaine), infections (e.g., bacteria such as Staphylococcus aureus and Borrelia burgdorferi, viruses, parasites), inflammatory conditions, neurological diseases, and cancers. The side effects range from minor to life-threatening, with lower doses conveying less risk. Caution in human use is needed due to the considerable inter-subject variability in disulfiram pharmacokinetics. Conclusions: While disulfiram has promise as a "repurposed" agent in human disease, its risk profile is of concern. Animal studies and well-controlled clinical trials are needed to assess its safety and efficacy for non-alcohol-related indications.

2.
J Biol Chem ; 293(9): 3104-3117, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29330300

ABSTRACT

The [URE3] yeast prion is the self-propagating amyloid form of the Ure2 protein. [URE3] is cured by overexpression of several yeast proteins, including Ydj1, Btn2, Cur1, Hsp42, and human DnaJB6. To better understand [URE3] curing, we used real-time imaging with a yeast strain expressing a GFP-labeled full-length Ure2 construct to monitor the curing of [URE3] over time. [URE3] yeast cells exhibited numerous fluorescent foci, and expression of the GFP-labeled Ure2 affected neither mitotic stability of [URE3] nor the rate of [URE3] curing by the curing proteins. Using guanidine to cure [URE3] via Hsp104 inactivation, we found that the fluorescent foci are progressively lost as the cells divide until they are cured; the fraction of cells that retained the foci was equivalent to the [URE3] cell fraction measured by a plating assay, indicating that the foci were the prion seeds. During the curing of [URE3] by Btn2, Cur1, Hsp42, or Ydj1 overexpression, the foci formed aggregates, many of which were 0.5 µm or greater in size, and [URE3] was cured by asymmetric segregation of the aggregated seeds. In contrast, DnaJB6 overexpression first caused a loss of detectable foci in cells that were still [URE3] before there was complete dissolution of the seeds, and the cells were cured. We conclude that GFP labeling of full-length Ure2 enables differentiation among the different [URE3]-curing mechanisms, including inhibition of severing followed by seed dilution, seed clumping followed by asymmetric segregation between mother and daughter cells, and seed dissolution.


Subject(s)
Fungal Proteins/metabolism , Molecular Imaging , Prions/metabolism , Yeasts/cytology , Time Factors , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...