Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(6)2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37372027

ABSTRACT

Thymol (THY) and 24-epibrassinolide (24-EPI) are two examples of plant-based products with promising therapeutic effects. In this study, we investigated the anti-inflammatory, antioxidant and anti-apoptotic effects of the THY and 24-EPI. We used zebrafish (Danio rerio) larvae transgenic line (Tg(mpxGFP)i114) to evaluate the recruitment of neutrophils as an inflammatory marker to the site of injury after tail fin amputation. In another experiment, wild-type AB larvae were exposed to a well known pro-inflammatory substance, copper (CuSO4), and then exposed for 4 h to THY, 24-EPI or diclofenac (DIC), a known anti-inflammatory drug. In this model, the antioxidant (levels of reactive oxygen species-ROS) and anti-apoptotic (cell death) effects were evaluated in vivo, as well as biochemical parameters such as the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), the biotransformation activity of glutathione-S-transferase, the levels of glutathione reduced and oxidated, lipid peroxidation, acetylcholinesterase activity, lactate dehydrogenase activity, and levels of nitric acid (NO). Both compounds decreased the recruitment of neutrophils in Tg(mpxGFP)i114, as well as showed in vivo antioxidant effects by reducing ROS production and anti-apoptotic effects in addition to a decrease in NO compared to CuSO4. The observed data substantiate the potential of the natural compounds THY and 24-EPI as anti-inflammatory and antioxidant agents in this species. These results support the need for further research to understand the molecular pathways involved, particularly their effect on NO.

2.
Chemosphere ; 308(Pt 2): 136430, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36113654

ABSTRACT

The use of glyphosate-based herbicides (GBH) has increased dramatically, being currently the most used herbicides worldwide. Glyphosate acts as a chelating agent, capable of chelate metals. The synergistic effects of metals and agrochemicals may pose an environmental problem as they have been shown to induce neurological abnormalities and behavioural changes in aquatic species. However, as their ecotoxicity effects are poorly understood, evaluating the impacts of GBH complexed with metals is an ecological priority. The main objective of the study was to evaluate the potentially toxic effects caused by exposure to a GBH (1 µg a.i. mL-1), alone or complexed with metals (Copper, Manganese, and Zinc (100 µg L-1)), at environmentally relevant concentrations, during the early period of zebrafish (Danio rerio) embryo development (96 h post-fertilization), a promising model for in vivo developmental studies. To clarify the mechanisms of toxicity involved, lethal and sublethal development endpoints were assessed. At the end of the exposure, biochemical and cell death parameters were evaluated and, 24 h later, different behavioural responses were assessed. The results showed that metals induced higher levels of toxicity. Copper caused high mortality, low hatching, malformations, and changes in biochemical parameters, such as decreased Catalase (CAT) activity, increased Glutathione Peroxidase (GPx), Glutathione S-Transferase (GST), reduced Glutathione (GSH) and decreased Acetylcholinesterase (AChE) activity, also inducing apoptosis and changes in larval behaviour. Manganese increased the activity of SODs enzymes. Zinc increased mortality, reactive oxygen species (ROS) levels, superoxide dismutase activity (SODs) and caused a decrease in AChE activity. Embryos/larvae exposed to the combination of GBH/Metal also showed teratogenic effects during their development but in smaller proportions than the metal alone. Although more studies are needed, the results suggest that GBH may interfere with the mechanisms of metal toxicity at the biochemical, physiological, and behavioural levels of zebrafish.


Subject(s)
Herbicides , Water Pollutants, Chemical , Acetylcholinesterase/metabolism , Animals , Antioxidants/metabolism , Catalase/metabolism , Chelating Agents/metabolism , Copper/metabolism , Embryo, Nonmammalian , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Glycine/analogs & derivatives , Herbicides/metabolism , Manganese/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/metabolism , Zebrafish/metabolism , Zinc/metabolism , Glyphosate
3.
Foods ; 11(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35010245

ABSTRACT

Brassica by-products are a source of natural bioactive molecules such as glucosinolates and isothiocyanates, with potential applications in the nutraceutical and functional food industries. However, the effects of oral sub-chronic exposure to broccoli by-product flour (BF) have not yet been evaluated. The objective of this pilot study was to analyse the effects of BF intake in the physiological parameters of FVB/N mice fed a 6.7% BF-supplemented diet for 21 days. Glucosinolates and their derivatives were also quantified in plasma and urine. BF supplementation significantly decreased (p < 0.05) the accumulation of perirenal adipose tissue. Furthermore, mice supplemented with BF showed significantly lower (p < 0.01) microhematocrit values than control animals, but no impact on the general genotoxicological status nor relevant toxic effects on the liver and kidney were observed. Concerning hepatic and renal antioxidant response, BF supplementation induced a significant increase (p < 0.05) in the liver glutathione S-transferase (GST) levels. In BF-supplemented mice, plasma analysis revealed the presence of the glucosinolates glucobrassicin and glucoerucin, and the isothiocyanates sulforaphane and indole-3-carbinol. Overall, these results show that daily intake of a high dose of BF during three weeks is safe, and enables the bioavailability of beneficial glucosinolates and isothiocyanates. These results allow further testing of the benefits of this BF in animal models of disease, knowing that exposure of up to 6.7% BF does not present relevant toxicity.

4.
Biomedicines ; 9(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34944599

ABSTRACT

Glyphosate-based herbicides (GBH) are the most used herbicides in the world, carrying potentially adverse consequences to the environment and non-target species due to their massive and inadequate use. This study aimed to evaluate the effects of acute exposure to a commercial formulation of glyphosate, Roundup® Flex (RF), at environmentally relevant and higher concentrations in zebrafish larvae through the assessment of the inflammatory, oxidative stress and cell death response. Transgenic Tg(mpxGFP)i114 and wild-type (WT) zebrafish larvae (72 h post-fertilisation) were exposed to 1, 5, and 10 µg mL-1 of RF (based on the active ingredient concentration) for 4 h 30 min. A concentration of 2.5 µg mL-1 CuSO4 was used as a positive control. Copper sulphate exposure showed effectiveness in enhancing the inflammatory profile by increasing the number of neutrophils, nitric oxide (NO) levels, reactive oxygen species (ROS), and cell death. None of the RF concentrations tested showed changes in the number of neutrophils and NO. However, the concentration of 10 µg a.i. mL-1 was able to induce an increase in ROS levels and cell death. The activity of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)), the biotransformation activity, the levels of reduced (GSH) and oxidised (GSSG) glutathione, lipid peroxidation (LPO), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE) were similar among groups. Overall, the evidence may suggest toxicological effects are dependent on the concentration of RF, although at concentrations that are not routinely detected in the environment. Additional studies are needed to better understand the underlying molecular mechanisms of this formulation.

5.
Food Funct ; 12(9): 4005-4014, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33978005

ABSTRACT

Tilia platyphyllos Scop. is a popular broad-leaved tree, native to Central and Southern Europe. Hydroethanolic extracts rich in phenolic compounds obtained from T. platyphyllos Scop. have shown in vitro antioxidant, anti-inflammatory and antitumor properties. The aim of this work was to evaluate the therapeutic properties of a hydroethanolic extract obtained from T. platyphyllos in HPV16-transgenic mice. The animals were divided into eight groups according to their sex and phenotype. Four groups of female: HPV+ exposed to linden (HPV linden; n = 6), HPV+ (HPV water; n = 4), HPV- exposed to linden (WT linden; n = 5) and HPV- (WT water; n = 4) and four groups of male: HPV+ exposed to linden (HPV linden; n = 5), HPV+ (HPV water; n = 5), HPV- exposed to linden (WT linden; n = 5) and HPV- (WT water; n = 7). The linden (Tilia platyphyllos Scop.) extract was orally administered at a dose of 4.5 mg/10 mL per animal (dissolved in water) and changed daily for 33 days. The hydroethanolic extract of T. platyphyllos consisted of protocatechuic acid and (-)-epicatechin as the most abundant phenolic acid and flavonoid, respectively, and was found to be stable during the studied period. In two male groups a significant positive weight gain was observed but without association with the linden extract. Histological, biochemical, and oxidative stress analyses for the evaluation of kidney and liver damage support the hypothesis that the linden extract is safe and well-tolerated under the present experimental conditions. Skin histopathology does not demonstrate the chemopreventive effect of the linden extract against HPV16-induced lesions. The linden extract has revealed a favourable toxicological profile; however, additional studies are required to determine the chemopreventive potential of the linden extract.


Subject(s)
Antineoplastic Agents/pharmacology , Epidermis/pathology , Human papillomavirus 16 , Papillomavirus Infections/pathology , Plant Extracts/pharmacology , Tilia , Animals , Antineoplastic Agents/toxicity , Catechin/analysis , Female , Flavonoids/analysis , Hydroxybenzoates/analysis , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Transgenic , Plant Extracts/chemistry , Plant Extracts/toxicity
6.
Chemosphere ; 253: 126636, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32276117

ABSTRACT

The use of herbicides with glyphosate as an active ingredient (a.i.) has increased dramatically in recent years, with its residues often being found in either soil or water. Nevertheless, concerns have arisen about its harmful side effects for both ecosystems and wildlife health. Therefore, the objective of this work was to assess the effects of a commercial formulation of glyphosate (RoundUp® UltraMax), at environmentally relevant concentrations on zebrafish embryos through a set of behavioural patterns. Zebrafish embryos were exposed to 0, 1, 2 and 5 µg a.i. mL-1 concentrations of the glyphosate formulation for 72 h (from 2.5 to 75 h post-fertilization (hpf)). After exposure, larvae were washed and allowed to develop until 144 hpf. At this point, the larvae behaviour was evaluated using a battery of tests to assess the general exploratory motility, escape-like responses, anxiety-related behaviours and social interactions. In addition, cortisol levels were assessed. No significant changes were observed relative to the exploratory behaviour in the standard open field. The anxiety-related behaviours were similar among groups, and no social interference was observed following exposure to these glyphosate concentrations. Likewise, cortisol levels remained similar among treatments. Still, the larvae exposed to 5 µg a.i. mL-1 did not react to the presence of an aversive stimulus, supporting glyphosate-induced changes in the sensory-motor coordination during development. In general, these results indicate a possible neurotoxic effect of this glyphosate-based formulation that should be further evaluated. In addition, the results obtained could impose a risk for wildlife sensitive species that should not be neglected.


Subject(s)
Glycine/analogs & derivatives , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Ecosystem , Embryo, Nonmammalian/drug effects , Embryonic Development , Glycine/toxicity , Larva/drug effects , Zebrafish/embryology , Zebrafish/physiology , Glyphosate
7.
Biomedicines ; 8(4)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32260459

ABSTRACT

The production of chestnut (Castanea sativa Miller) is mostly concentrated in Europe. Chestnut is recognized by its high content of antioxidants and phytosterols. This work aimed to evaluate the effects of dietary chestnut consumption over physiological variables of FVB/n mice. Eighteen FVB/n male 7-month-old mice were randomly divided into three experimental groups (n = 6): 1 (control group) fed a standard diet; 2 fed a diet supplemented with 0.55% (w/w) chestnut; and 3 supplemented with 1.1% (w/w) chestnut. Body weight, water, and food intake were recorded weekly. Following 35 days of supplementation, the mice were sacrificed for the collection of biological samples. Chestnut supplementation at 1.1% reduced abdominal adipose tissue. Lower serum cholesterol was also observed in animals supplemented with chestnut. There were no significant differences concerning the incidence of histological lesions nor in biochemical markers of hepatic damage and oxidative stress. These results suggest that chestnut supplementation may contribute to regulate adipose tissue deposition.

8.
Chemosphere ; 223: 514-522, 2019 May.
Article in English | MEDLINE | ID: mdl-30784758

ABSTRACT

The use of herbicides with glyphosate as an active ingredient, the so-called glyphosate-based herbicides (GBH), has increased dramatically in recent years currently being the most widely used in the world. Therefore, glyphosate residues have been detected in water and soils near the application sites. Recent studies indicate that GBH may cause adverse effects on vertebrates although these have been attributed to the presence of adjuvants in the commercial formulations rather than to the sole compound. Accordingly, the objective of this work was to investigate the lethal and sub-lethal developmental effects, neurotoxic potential and oxidative stress responses of zebrafish embryos to Roundup® Ultramax (RU) exposure. Embryos were exposed during 72 h to 0, 2, 5, 8.5 µg a.i. mL-1 of RU. Increased mortality was observed in embryos exposed to concentrations above 8.5 µg a.i. mL-1 as well as increased number of malformations. Decreased heart rate and hatchability were also observed. By contrast, exposure to concentrations that do not evoke teratogenic outcomes induced a dose-dependent decrease of heart rate although not inducing significant developmental changes. However, histological changes were not observed in the larvae exposed to these concentrations. Moreover, the generation of reactive oxygen species, the antioxidant enzymes activities (SOD and CAT), the GST biotransformation activity, the glutathione levels (GSH and GSSG), the oxidative damage (MDA) and the acetylcholinesterase and lactate dehydrogenase were similar among groups following exposure. Overall, available evidence suggests a dose-dependent toxicological effect of this formulation at concentrations that are not routinely detected in the environment. However, additional studies should be performed to better understand the underlying molecular mechanisms in favor of this formulation.


Subject(s)
Embryonic Development/drug effects , Glycine/analogs & derivatives , Herbicides/adverse effects , Teratogens/chemistry , Zebrafish/embryology , Animals , Glycine/adverse effects , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...