Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Cogn Sci ; 25(6): 493-505, 2021 06.
Article in English | MEDLINE | ID: mdl-33745819

ABSTRACT

Others' observed actions cause continuously changing retinal images, making it challenging to build neural representations of action identity. The monkey anterior intraparietal area (AIP) and its putative human homologue (phAIP) host neurons selective for observed manipulative actions (OMAs). The neuronal activity of both AIP and phAIP allows a stable readout of OMA identity across visual formats, but human neurons exhibit greater invariance and generalize from observed actions to action verbs. These properties stem from the convergence in AIP of superior temporal signals concerning: (i) observed body movements; and (ii) the changes in the body-object relationship. We propose that evolutionarily preserved mechanisms underlie the specification of observed-actions identity and the selection of motor responses afforded by them, thereby promoting social behavior.


Subject(s)
Movement , Parietal Lobe , Brain Mapping , Neurons , Psychomotor Performance
2.
J Neural Eng ; 18(2)2021 02 26.
Article in English | MEDLINE | ID: mdl-33461177

ABSTRACT

Objective.Previous studies demonstrated the possibility to fabricate stereo-electroencephalography probes with high channel count and great design freedom, which incorporate macro-electrodes as well as micro-electrodes offering potential benefits for the pre-surgical evaluation of drug resistant epileptic patients. These new polyimide probes allowed to record local field potentials, multi- and single-unit activity (SUA) in the macaque monkey as early as 1 h after implantation, and yielded stable SUA for up to 26 d after implantation. The findings opened new perspectives for investigating mechanisms underlying focal epilepsy and its treatment, but before moving to possible human application, safety data are needed. In the present study we evaluate the tissue response of this new neural interface by assessing post-mortem the reaction of brain tissue along and around the probe implantation site.Approach.Three probes were implanted, independently, in the brain of one monkey (Macaca mulatta) at different times. We used specific immunostaining methods for visualizing neuronal cells and astrocytes, for measuring the extent of damage caused by the probe and for relating it with the implantation time.Main results.The size of the region where neurons cannot be detected did not exceed the size of the probe, indicating that a complete loss of neuronal cells is only present where the probe was physically positioned in the brain. Furthermore, around the probe shank, we observed a slightly reduced number of neurons within a radius of 50µm and a modest increase in the number of astrocytes within 100µm.Significance.In the light of previous electrophysiological findings, the present data suggest the potential usefulness and safety of this probe for human applications.


Subject(s)
Electroencephalography , Polymers , Animals , Electrodes, Implanted/adverse effects , Electroencephalography/methods , Macaca mulatta , Neurons/physiology
3.
Sci Rep ; 7(1): 8571, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28819117

ABSTRACT

Following gaze is a crucial skill, in primates, for understanding where and at what others are looking, and often requires head rotation. The neural basis underlying head rotation are deemed to overlap with the parieto-frontal attention/gaze-shift network. Here, we show that a set of neurons in monkey's Brodmann area 9/46dr (BA 9/46dr), which is involved in orienting processes and joint attention, becomes active during self head rotation and that the activity of these neurons cannot be accounted for by saccade-related activity (head-rotation neurons). Another set of BA 9/46dr neurons encodes head rotation performed by an observed agent facing the monkey (visually triggered neurons). Among these latter neurons, almost half exhibit the intriguing property of encoding both execution and observation of head rotation (mirror-like neurons). Finally, by means of neuronal tracing techniques, we showed that BA 9/46dr takes part into two distinct networks: a dorso/mesial network, playing a role in spatial head/gaze orientation, and a ventrolateral network, likely involved in processing social stimuli and mirroring others' head. The overall results of this study provide a new, comprehensive picture of the role of BA 9/46dr in encoding self and others' head rotation, likely playing a role in head-following behaviors.


Subject(s)
Head Movements/physiology , Macaca fascicularis/physiology , Macaca mulatta/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Action Potentials/physiology , Animals , Attention/physiology , Female , Fixation, Ocular/physiology , Neurons/cytology , Orientation, Spatial/physiology , Prefrontal Cortex/cytology , Psychomotor Performance/physiology , Rotation , Saccades/physiology , Visual Perception/physiology
4.
J Neural Eng ; 14(3): 036010, 2017 06.
Article in English | MEDLINE | ID: mdl-28102825

ABSTRACT

OBJECTIVE: Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. APPROACH: System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. MAIN RESULTS: Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm-2. Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. SIGNIFICANCE: The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad spectrum of applications. With the demonstrated performance, these probes are suitable for both semi-chronic and chronic applications.


Subject(s)
Action Potentials/physiology , Electrodes, Implanted , Electroencephalography/instrumentation , Microelectrodes , Motor Cortex/physiology , Printing, Three-Dimensional , Tissue Array Analysis/instrumentation , Animals , Electric Impedance , Equipment Design , Equipment Failure Analysis , Humans , Macaca mulatta , Male , Reproducibility of Results , Sensitivity and Specificity
5.
J Neural Eng ; 13(4): 046006, 2016 08.
Article in English | MEDLINE | ID: mdl-27247248

ABSTRACT

OBJECTIVE: Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. APPROACH: Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 µm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. MAIN RESULTS: Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. SIGNIFICANCE: With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications.


Subject(s)
Brain/physiology , Electroencephalography/instrumentation , Electroencephalography/methods , Evoked Potentials/physiology , Neurons/physiology , Animals , Biocompatible Materials , Electrodes, Implanted , Epilepsies, Partial/physiopathology , Female , Macaca mulatta , Microelectrodes , Parietal Lobe/physiology
6.
Brain Struct Funct ; 220(2): 763-79, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24337260

ABSTRACT

The effect of intracortical microstimulation has been studied in several cortical areas from motor to sensory areas. The frontal pole has received particular attention, and several microstimulation studies have been conducted in the frontal eye field, supplementary eye field, and the premotor ear-eye field, but no microstimulation studies concerning area 9 are currently available in the literature. In the present study, to fill up this gap, electrical microstimulation was applied to area 9 in two macaque monkeys using long-train pulses of 500-700-800 and 1,000 ms, during two different experimental conditions: a spontaneous condition, while the animals were not actively fixating on a visual target, and during a visual fixation task. In these experiments, we identified backward ear movements, goal-directed eye movements, and the development of head forces. Kinematic parameters for ear and eye movements overlapped in the spontaneous condition, but they were different during the visual fixation task. In this condition, ear and eye kinematics have an opposite behavior: movement amplitude, duration, and maximal and mean velocities increase during a visual fixation task for the ear, while they decrease for the eye. Therefore, a top-down visual attention engagement could modify the kinematic parameters for these two effectors. Stimulation with the longest train durations, i.e., 800/1,000 ms, evokes not only the highest eye amplitude, but also a significant development of head forces. In this research article, we propose a new vision of the frontal oculomotor fields, speculating a role for area 9 in the control of goal-directed orienting behaviors and gaze shift control.


Subject(s)
Attention/physiology , Frontal Lobe/physiology , Movement , Animals , Ear/physiology , Electric Stimulation , Female , Fixation, Ocular , Head , Macaca fascicularis , Saccades , Visual Perception
7.
Neurosci Biobehav Rev ; 37(8): 1434-44, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23727051

ABSTRACT

In macaque monkey, area 8B is cytoarchitectonically considered a transitional area between the granular Brodmann area 9, rostrally, and the rostral part of the dorsal agranular Brodmann area 6, caudally. As for electrophysiological data, microstimulation of area 8B evokes ear and/or eye movements; unit activity recording shows neurons encoding different auditory environmental stimuli and ear and/or eye movements. Moreover, visual attentive fixation modulates the discharge of auditory environmental neurons and auditory-motor neurons. As for anatomical data, area 8B is connected with auditory cortical areas, superior colliculus and cerebellum. Current functional and anatomical evidences support that area 8B is a specific Premotor Ear-Eye Field (PEEF) involved in auditory stimuli recognition and in orienting processes. In conclusion, we suggest that PEEF could play an important role in engaging the auditory spatial attention for the purpose of orienting eye and ear towards the sound source.


Subject(s)
Auditory Cortex/physiology , Frontal Lobe/physiology , Motor Cortex/physiology , Visual Fields/physiology , Animals , Attention/physiology , Macaca , Neurons/physiology
8.
Exp Brain Res ; 186(1): 131-41, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18038127

ABSTRACT

In previous reports, we showed the involvement of area 8B neurons in both spontaneous ear and eye movement and in auditory information processing. Audition-related cells responded to complex environmental stimuli, but not to pure tones, and their activity changed during visual fixation as a possible inhibitory expression of the engagement of attention. We observed auditory, auditory-motor and motor cells for both eye and ear movements. This finding suggests that area 8B may be involved in the integration of auditory input with ear and eye motor output. In this paper, we extended these previous studies by examining area 8B activity in relation to auditive orienting behaviour, as well as the ocular orientation (i.e., visual fixation) studied previously. Visual fixation led to inhibition of activity in auditory and auditory-motor cells, which suggests that attention may be involved in both, maintaining the eye position and reducing the response of these cell types. Accordingly, during a given task or natural behaviour, spatial attention seems to affect more than one sensorimotor channel simultaneously. These data add to our understanding of how the neural network, through a two-channel attentive process, accomplishes to switch between two effectors, namely eyes and ears. Considering the functional, anatomical and cytoarchitectonic differences among the frontal eye field (FEF), the supplementary eye field (SEF) and area 8B, we propose to consider area 8B as a separate premotor ear-eye field (PEEF).


Subject(s)
Auditory Perception/physiology , Cognition/physiology , Frontal Lobe/physiology , Motor Activity/physiology , Motor Cortex/physiology , Saccades/physiology , Visual Fields/physiology , Acoustic Stimulation , Animals , Color Perception , Fixation, Ocular , Learning/physiology , Macaca fascicularis , Neurons/physiology , Reward , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...