Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 207: 169-179, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30599996

ABSTRACT

The potential use of cellulose nanofibers (CNFs) as a reinforcing agent in banana starch-based nanocomposite films was investigated. CNFs were isolated from banana peel (Musa paradisiaca) by enzymatic hydrolysis. Banana starch-based nanocomposite films were prepared with CNFs using the casting method. CNFs effect on cell viability and on nanocomposite films properties' was investigated. The cytotoxicity of CNFs was assessed on Caco-2 cell line. CNFs were not cytotoxic at 50-2000 µg/mL. However, CNFs above 2000 µg/mL significantly decreased cell viability. Topography analysis showed that the incorporation of CNFs modified the film structure. The nanocomposites exhibited a complex structure due to strong interactions between CNFs and starch matrix, promoting a remarkable improvement on mechanical and water barrier properties, opacity and UV light barrier compared to the control film. CNFs can offer a great potential as reinforcing material for starch-based nanocomposite films, producing a value-added food packaging from a waste material.


Subject(s)
Cellulose/toxicity , Fruit/chemistry , Musa/chemistry , Nanocomposites/toxicity , Nanofibers/toxicity , Starch/toxicity , Caco-2 Cells , Cell Survival/drug effects , Cellulose/chemistry , Elastic Modulus , Food Packaging/instrumentation , Humans , Hydrolysis , Nanocomposites/chemistry , Nanofibers/chemistry , Permeability , Starch/chemistry , Tensile Strength , Water/chemistry
2.
Nanotechnology ; 25(45): 455603, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25338749

ABSTRACT

Partly released, relaxed and wrinkled InGaAs membranes are used as virtual substrates for overgrowth with InAs. Such samples exhibit different lattice parameters for the unreleased epitaxial parts, the released flat, back-bond areas and the released wrinkled areas. A large InAs migration towards the released membrane is observed with a material accumulation on top of the freestanding wrinkles during overgrowth. A semi-quantitative analysis of the misfit strain shows that the material migrates to the areas of the sample with the lowest misfit strain, which we consider as the areas of the lowest chemical potential of the surface. Material migration is also observed for the edge-supported, freestanding InGaAs membranes found on these samples. Our results show that the released, wrinkled nanomembranes offer a growth template for InAs deposition that fundamentally changes the migration behavior of the deposited material on the growth surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...