Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1400157, 2024.
Article in English | MEDLINE | ID: mdl-38690358

ABSTRACT

Introduction: The ancient ivories unearthed from the Sanxingdui Ruins site are valuable cultural relics, however, the microbial biodeterioration on ivories during temporary cold storage poses a great threat to their later long-term preservation. Methods: Here, the combination of high-throughput sequencing and biochemical assays was applied for the in-depth investigation of the key deteriorative microorganisms colonizing on the ivories and the tracing of their origin, as well as the assessment of the ethanol disinfection impact on the microbial communities on ivories. Results: It was observed that the surfaces of ivories were scattered by the fungal patches of white, dark grey, and hedge green colors during cold storage. The high-throughput sequencing results showed that the genera Mortierella (38.51%), Ilyonectria (14.43%), Penicillium (1.15%), and Aspergillus (1.09%) were the dominant fungi, while Pseudomonas (22.63%), Sphingopyxis (3.06%), and Perlucidibaca (2.92%) were the dominant bacteria on ivories. The isolated Aspergillus A-2 resulted in the highest amount of calcium releasing from the degradation of hydroxyapatite (HAP), the main component of ivory, by the organic acids produced, including oxalic acid and citric acid. The fast expectation-maximization for microbial source tracking (FEAST) analysis revealed that the majority of the fungi (57.45%) and bacteria (71.84%) colonizing on the ivories were derived from the soils surrounding ivories in the sacrifice pits, indicating soils as the primary source for the spoilage microbes growing on ivories. The dominant strains could degrade cellulose, the key components of wet cotton towels commonly applied on ivories for moisture maintenance, aiding the spoilage microbes colonizing on ivories. Notably, the ivory disinfection with 75% ethanol during the cleansing significantly decreased the relative abundance of the dominant genera of Ilyonectria, Aspergillus, and Pseudomonas, with Mortierella becoming the dominant one on ivories. Discussion: Together, the fungi, particularly Aspergillus and Penicillium, played a significant role in the microbial biodeterioration of unearthed ancient ivories by producing the organic acids. These results may improve the control of the microbial biodeterioration and develop more efficient strategies for the long-time conservation of unearthed ancient ivories and other cultural relics.

2.
Toxins (Basel) ; 15(5)2023 04 27.
Article in English | MEDLINE | ID: mdl-37235346

ABSTRACT

Ingestion of food toxins such as aflatoxin B1 (AFB1) during pregnancy may impair fetal neurodevelopment. However, animal model results may not be accurate due to the species' differences, and testing on humans is ethically impermissible. Here, we developed an in vitro human maternal-fetal multicellular model composed of a human hepatic compartment, a bilayer placental barrier, and a human fetal central nervous system compartment using neural stem cells (NSCs) to investigate the effect of AFB1 on fetal-side NSCs. AFB1 passed through the HepG2 hepatocellular carcinoma cells to mimic the maternal metabolic effects. Importantly, even at the limited concentration (0.0641 ± 0.0046 µM) of AFB1, close to the national safety level standard of China (GB-2761-2011), the mixture of AFB1 crossing the placental barrier induced NSC apoptosis. The level of reactive oxygen species in NSCs was significantly elevated and the cell membrane was damaged, causing the release of intracellular lactate dehydrogenase (p < 0.05). The comet experiment and γ-H2AX immunofluorescence assay showed that AFB1 caused significant DNA damage to NSCs (p < 0.05). This study provided a new model for the toxicological evaluation of the effect of food mycotoxin exposure during pregnancy on fetal neurodevelopment.


Subject(s)
Aflatoxin B1 , Mycotoxins , Animals , Female , Pregnancy , Humans , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Placenta/metabolism , DNA Damage , Mycotoxins/metabolism , Liver/metabolism
3.
Food Chem ; 409: 135195, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36571901

ABSTRACT

Growing evidence suggests that polyphenols could mitigate type 2 diabetes mellitus (T2DM). The glucose-regulatory effects of protein-bound polyphenols, however, have been rarely studied. In this study, macrogenomic and metabolomic analyses were applied to investigate the modulation of myofibrillar protein-chlorogenic acid (MP-CGA) complexes on T2DM rats from the gut microbiota perspective. Results showed that MP-CGA improved hyperglycemia and hyperlipidemia, decreased intestinal inflammation, and reduced intestinal barrier injury. MP-CGA reconstructed gut microbiota in T2DM rats, elevating the abundance of probiotics Bacteroides, Akkermansia, and Parabacteroides while suppressing opportunistic pathogens Enterococcus and Staphylococcus. MP-CGA significantly elevated the concentrations of intestinal metabolites like butyric acid that positively regulate T2DM and reduced the secondary bile acids contents. Therefore, MP-CGA modulated the gut microbiota and related metabolites to maintain stable blood glucose in T2DM rats, providing new insights into the application of protein-polyphenol complexes in foods.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Rats , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Chlorogenic Acid/pharmacology , Blood Glucose , Polyphenols/pharmacology
4.
BMC Microbiol ; 22(1): 260, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309654

ABSTRACT

BACKGROUND: Female reproductive tract infection (RTI) is the common source of varied diseases, especially as an important risk factor for pregnancy outcomes, therefore the rapid, accurate and simultaneous detection of multiple pathogens is in urgent need for assisting the diagnosis and treatment of RTI in pregnant women. Streptococcus agalactiae (S. agalactiae), Enterococcus faecalis (E. faecalis), Gardnerella vaginalis (G. vaginalis), Candida albicans (C. albicans) and Chlamydia trachomatis (C. trachomatis) are five main pathogens in lower genital tract with high risk, serious consequences and clinical demands. The combination of loop-mediated isothermal amplification (LAMP) and microfluidic technology was used to develop the LAMP-microfluidic chip for rapid, simple, sensitive and simultaneous detection of the five target pathogens above. RESULTS: Standard strains and clinical isolates were used for the establishment of the novel LAMP method in tube and LAMP-microfluidic chip, followed by the chip detection on 103 clinical samples and PCR verification partially. The sensitivities of LAMP of S. agalactiae, E. faecalis, G. vaginalis, and C. albicans in tube were 22.0, 76.0, 13.2, 1.11 CFU/µL, respectively, and C. trachomatis was 41.3 copies/µL; on LAMP-microfluidic chip they were 260, 154, 3.9 and 7.53 CFU/µL, respectively, and C. trachomatis was 120 copies/µL. The positive coincidence rates of clinical stains in tube and on chip experiments were 100%. Compared with the classic culture method performed in hospitals, the positive coincidence rate of the 103 clinical samples detected by LAMP-microfluidic chip were 100%. For the six inconsistent ones, including four G. vaginalis and two C. albicans positive samples tested by LAMP-microfluidic chip and verified by PCR were negative by culturing method in hospitals, indicating the lack of efficient detection by the classic culturing method. CONCLUSION: Our study suggested that the LAMP-microfluidic chips could simultaneously, efficiently, and accurately detect multiple main pathogens, including S. agalactiae, E. faecalis, G. vaginalis, C. albicans and C. trachomatis, in clinical samples of female RTI to give a great clinical value. Accordingly, this novel method has the potential to provide a valuable reference for female RTI screening and early diagnosis during pregnancy.


Subject(s)
Microfluidics , Reproductive Tract Infections , Female , Humans , Pregnancy , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction , Chlamydia trachomatis/genetics
5.
Antibiotics (Basel) ; 11(7)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35884137

ABSTRACT

The widespread escalation of bacterial resistance threatens the safety of the food chain. To investigate the resistance characteristics of E. coli strains isolated from disinfected tableware against both disinfectants and antibiotics, 311 disinfected tableware samples, including 54 chopsticks, 32 dinner plates, 61 bowls, 11 cups, and three spoons were collected in Chengdu, Sichuan Province, China to screen for disinfectant- (benzalkonium chloride and cetylpyridinium chloride) and tigecycline-resistant isolates, which were then subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). The coliform-positive detection rate was 51.8% (161/311) and among 161 coliform-positive samples, eight E. coli strains were multidrug-resistant to benzalkonium chloride, cetylpyridinium chloride, ampicillin, and tigecycline. Notably, a recently described mobile colistin resistance gene mcr-10 present on the novel IncFIB-type plasmid of E. coli EC2641 screened was able to successfully transform the resistance. Global phylogenetic analysis revealed E. coli EC2641 clustered together with two clinically disinfectant- and colistin-multidrug-resistant E. coli strains from the US. This is the first report of mcr-10-bearing E. coli detected in disinfected tableware, suggesting that continuous monitoring of resistance genes in the catering industry is essential to understand and respond to the transmission of antibiotic resistance genes from the environment and food to humans and clinics.

6.
Virol Sin ; 37(1): 38-47, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35234617

ABSTRACT

Since mid-2016, the low pathogenic H7N9 influenza virus has evolved into a highly pathogenic (HP) phenotype in China, raising many concerns about public health and poultry industry. The insertion of a "KRTA" motif at hemagglutinin cleavage site (HACS) occurred in the early stage of HP H7N9 variants. During the co-circulation, the HACS of HP-H7N9 variants were more polymorphic in birds and humans. Although HP-H7N9 variants, unlike the H5 subtype virus, exhibited the insertions of basic and non-basic amino acids, the underlying function of those insertions and substitutions remains unclear. The results of bioinformatics analysis indicated that the PEVPKRKRTAR/G motif of HACS had become the dominant motif in China. Then, we generated six H7N9 viruses bearing the PEIPKGR/G, PEVPKGR/G, PEVPKRKRTAR/G, PEVPKGKRTAR/G, PEVPKGKRIAR/G, and PEVPKRKRR/G motifs. Interestingly, after the deletion of threonine and alanine (TA) at HACS, the H7N9 viruses manifested decreased thermostability and virulence in mice, and the PEVPKRKRTAR/G-motif virus is prevalent in birds and humans probably due to its increased transmissibility and moderate virulence. By contrast, the insertion of non-basic amino acid isoleucine and alanine (IA) decreased the transmissibility in chickens and virulence in mice. Remarkably, the I335V substitution of H7N9 virus enhanced infectivity and transmission in chickens, suggesting that the combination of mutations and insertions of amino acids at the HACS promoted replication and pathogenicity in chickens and mice. The ongoing evolution of H7N9 increasingly threatens public health and poultry industry, so, its comprehensive surveillance and prevention of H7N9 viruses should be pursued.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Animals , Chickens , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/epidemiology , Mice , Virulence
7.
Front Vet Sci ; 9: 849178, 2022.
Article in English | MEDLINE | ID: mdl-35280146

ABSTRACT

H9N2 avian influenza viruses (AIVs) continuously cross the species barrier to infect mammalians and are repeatedly transmitted to humans, posing a significant threat to public health. Importantly, some H9N2 AIVs were found to cause lethal infection in mice, but little is known about the viral infection dynamics in vivo. To analyze the real-time infection dynamics, we described the generation of a mouse-lethal recombinant H9N2 AIV, an influenza reporter virus (VK627-NanoLuc virus) carrying a NanoLuc gene in the non-structural (NS) segment, which was available for in vivo imaging. Although attenuated for replication in MDCK cells, VK627-NanoLuc virus showed similar pathogenicity and replicative capacity in mice to its parental virus. Bioluminescent imaging of the VK627-NanoLuc virus permitted successive observations of viral infection and replication in infected mice, even following the viral clearance of a sublethal infection. Moreover, VK627-NanoLuc virus was severely restricted by the K627E mutation in PB2, as infected mice showed little weight loss and a low level of bioluminescence. In summary, we have preliminarily established a visualized tool that enables real-time observation of the infection and replication dynamics of H9N2 AIV in mice, which contributes to further understanding the mechanisms underlying the pathogenic enhancement of H9N2 AIV to mice.

8.
Transbound Emerg Dis ; 69(4): 1794-1803, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34008327

ABSTRACT

Avian influenza (AI) is an important zoonotic disease, which can be transmitted across species barriers to other hosts, especially humans, posing a serious threat to the poultry industry and public health. In recent years, human cases infected with the H10N8, H9N2, and H7N9 of avian influenza viruses (AIVs) have been identified frequently as have the internal genes of H7N9 and H10N8, which are derived from H9N2 viruses. The adaptive mutation of the PB2 gene is an important way for the H10N8, H9N2, and H7N9 AIVs to spread across species to adapt to new hosts. Several well-known adaptive mutations in the PB2 gene, such as E627K, D701N, and A588V, significantly enhanced the virulence of the AIVs in mammals. However, the co-adaptation of AIVs to avian and mammalian hosts is rarely studied. In this study, we found that the mutations of PB2-I292V, PB2-R389K, PB2-A588V, PB2-T598M/V, PB2-L648V, and PB2-T676M substitutions significantly increased after 2012. In addition, in our previous studies, we found that the human-origin and avian-origin of H10N8 AIVs with very high homology also have these six mutation differences in PB2 gene, and the avian-origin H10N8 strain known as JX102 with all the key amino acids on the PB2 protein in the pre-evolutionary stage, so JX102 was chosen as a model strain. Among them, PB2-A588V significantly enhanced the activity of polymerase in avian and mammalian cells. Notably, animal experiments showed that PB2-A588V substitution increased the pathogenicity and transmissibility in chickens and the virulence of mice. The combined mutations of PB2-F6 (including PB2-I292V, PB2-R389K, PB2-A588V, PB2-T598M, PB2-L648V, and PB2-T676M) obtained higher adaptability of AIVs in avians and mammals than that of the single mutation of PB2-A588V, which suggested that the PB2 588 site is a key co-adaptation site and that synergies with other mutation sites can further enhance this co-adaptability. The results of this study show that the emergence of co-adaptation not only increases the threat to avians and mammals but may also contribute to a pandemic among avians and cross the interspecies barrier to mammals.


Subject(s)
Influenza A Virus, H10N8 Subtype , Influenza A Virus, H7N9 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Rodent Diseases , Animals , Chickens , Humans , Influenza A Virus, H10N8 Subtype/metabolism , Influenza A Virus, H9N2 Subtype/genetics , Mammals , Mice , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence/genetics
9.
J Virol ; 92(2)2018 01 15.
Article in English | MEDLINE | ID: mdl-29070694

ABSTRACT

Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant.IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed the molecular features and compared the relative characteristics of one H7N9 LPAIV and two H7N9 HPAIVs isolated from chickens and two human-origin H7N9 HPAIVs in chicken and mouse models. We found that all HPAIVs both are highly pathogenic and have valid transmissibility in chickens. Strikingly, the human-origin viruses were more highly pathogenic than the avian-origin viruses in mice, and dynamic mutations were confirmed by NGS and Sanger sequencing. Our findings offer important insight into the origin, adaptation, pathogenicity, and transmissibility of these viruses to both poultry and mammals.


Subject(s)
Communicable Diseases, Emerging/virology , Influenza A Virus, H7N9 Subtype/physiology , Influenza in Birds/virology , Influenza, Human/virology , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Chickens , Female , Genetic Variation , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza in Birds/mortality , Mice , Mutation , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Phylogeny , Protein Binding , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...