Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(22): 14050-14084, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38781048

ABSTRACT

The development and optimization of promising anode material for next-generation alkali metal ion batteries are significant for clean energy evolution. 2D MXenes have drawn extensive attention in electrochemical energy storage applications, due to their multiple advantages including excellent conductivity, robust mechanical properties, hydrophilicity of its functional terminations, and outstanding electrochemical storage capability. In this review, the categories, properties, and synthesis methods of MXenes are first outlined. Furthermore, the latest research and progress of MXenes and their composites in alkali metal ion storage are also summarized comprehensively. A special emphasis is placed on MXenes and their hybrids, ranging from material design and fabrication to fundamental understanding of the alkali ion storage mechanisms to battery performance optimization strategies. Lastly, the challenges and personal perspectives of the future research of MXenes and their composites for energy storage are presented.

2.
J Am Chem Soc ; 145(51): 28038-28048, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38039312

ABSTRACT

Inspired by the ion channels of electric eels, we can use biomimetic nanofluidic materials to harvest the osmotic power released by mixing seawater and river water. While biological ion channels have both cation/anion and inter-cation selectivity, previous nanofluidic materials neglected the latter. As a result, NaCl solutions were generally used to simulate river water, ignoring the fact that the dominating cation in river water is typically Ca2+. In this work, we show that the different ionic compositions of seawater and river water can be exploited to improve osmotic power density by employing biomimetic sodium selective materials. Inspired by a range of properties of biological sodium channels, we constructed artificial sodium channels with zeolitic imidazolate framework-65 crystals, which selectively transport Na+ but almost completely block Ca2+. Resultantly, the effective concentration gradient of seawater/river water is dramatically increased by preventing the major cations in the river water from participating in the ion diffusion. As a result, the osmotic power density can be increased by more than 1 order of magnitude. These results should open new avenues to develop high-performance osmotic generators and may advance other applications based on biomimetic ion channels such as neuromorphic information processing.

3.
Angew Chem Int Ed Engl ; 62(19): e202218129, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36880813

ABSTRACT

Nanofluidic membranes have shown great promise in harvesting osmotic energy but its scalablity remains challenging since most studies only tested with a membrane area of ≈10-2  mm2 or smaller. We demonstrate that metal-organic-framework membranes with subnanometer pores can be used for scalable osmotic power generation from hypersaline water sources. Our membrane can be scaled up to a few mm2 , and the power density can be stabilized at 1.7 W m-2 . We reveal that the key is to improve the out-of-membrane conductance while keeping the membrane's charge selectivity, contradicting the previous conception that the ionic conductivity of the membrane plays the dominating role. We highlight that subnanometer pores are essential to ensure the charge selectivity in hypersaline water sources. Our results suggest the importance to engineer the interplay between the in-membrane and out-of-membrane ion transport properties for scalable osmotic power generation.

4.
RSC Adv ; 12(46): 29640-29646, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36321083

ABSTRACT

Layered two-dimensional (2D) membranes hold great promise in the study of confined ion transport and nanofluidic applications. However, 2D layered membranes suffer from poor stability in water and harsh chemical conditions. Here we use amorphous silica-based nanosheets obtained by vermiculite to assemble a layered glass membrane (LGM) with a 2D nanofluidic channel network in the interlayer space. We find that the water stability and corrosion resistance of the LGM are improved compared to that of the layered vermiculite membrane. Moreover, the surface charge-governed proton conductivity of LGM remains stable at about 4 × 10-2 S cm-1 when the HCl solution concentration changes by orders of magnitude. The enhanced stability of LGM is of great significance for the study of confined ion transport and is expected to be applied to more nanofluidic applications, such as water treatment, molecular sieving, and osmotic energy conversion.

5.
ACS Nano ; 16(6): 9142-9149, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35604126

ABSTRACT

Biological ion pumps selectively transport target ions against the concentration gradient, a process that is crucial to maintaining the out-of-equilibrium states of cells. Building an ion pump with ion selectivity has been challenging. Here we show that a Ti3C2Tx MXene film suspended in air with a trapezoidal shape spontaneously pumps K+ ions from the base end to the tip end and exhibits a K+/Na+ selectivity of 4. Such a phenomenon is attributed to a range of properties of MXene. Thanks to the high stability of MXene in water and the dynamic equilibrium between evaporation and swelling, the film keeps a narrow interlayer spacing of ∼0.3 nm when its two ends are connected to reservoirs. Because of the polar electrical structure and hydrophilicity of the MXene nanosheet, K+ ions experience a low energy barrier of ∼4.6 kBT when entering these narrow interlayer spacings. Through quantitative simulations and consistent experimental results, we further show that the narrow spacings exhibit a higher energy barrier to Na+, resulting in K+/Na+ selectivity. Finally, we show that the spontaneous ion transport is driven by the asymmetric evaporation of the interlayer water across the film, a mechanism that is similar to pressure driven streaming current. This work shows how ion transport properties can be facilely manipulated by tuning the macroscopic shape of nanofluidic materials, which may attract interest in the interface of kirigami technologies and nanofluidics and show potential in energy and separation applications.

6.
Water Res ; 219: 118598, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35597223

ABSTRACT

Controlling water transport is central to a wide range of water-related energy and environment issues. In particular, enhancing the water permeation is highly demanded for practical membrane applications such as water treatment. In this work, we demonstrate that the water permeation through the laminar and electrically conductive MXene membrane can be facilely modulated with electric field. By applying a negative voltage of a few volts on the membrane, the water permeation rate was enhanced by 70 times. Density functional theory calculations and experimental characterizations suggest that the enhancement arises from the enhanced water/MXene interaction under electric field, which manifests itself as enhanced hydrophilicity of the MXene nanosheets. Along with the facilitated water permeation, the rejection rate to dyes of the membrane was kept at a relatively high level, which was 93.1% to Congo red and 94.8% to aniline blue under an applied voltage of -3 V, showing the potential for dye separation and water purification. Considering that there has been increasing interest in utilizing MXene for separations and water treatment, this work should inspire a range of future works in the related area to improve the membrane performance with external stimuli.

7.
ACS Appl Mater Interfaces ; 14(15): 17968-17974, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35394739

ABSTRACT

While actuating liquid with external stimuli on open surfaces has been extensively studied, the actuation in tubes or channels is much more challenging due to the lower accessibility and higher complexity in material/device design, despite its crucial importance for microfluidic applications. Of various potential actuation methods, optical ones are particularly interesting because they can be remotely controlled with high spatial/temporal resolution. Yet, previous optical methods relied on the physical deformation of tubes, raising the concern of material fatigue and compromising reliability. Here we develop a low temperature photothermal method to actuate various liquids including water and oil in a tube. The tube has Janus configuration, with the upper part allowing light transmission and lower part imparted with high photothermal property. Combining with experiments and calculation, we show that the photothermal effect induces a wettability gradient to drive the liquid transport. Compared with the methods based on physical deformation, our method is more robust and can repeatedly function for at least 20 times. Thanks to the slippery surface, the actuation can be initiated at a moderate temperature of ∼40 °C, mitigating the risk of biomolecule degradation. We therefore expect our work to pave the way toward practical biomedical microfluidic applications.

8.
ACS Appl Mater Interfaces ; 12(16): 19194-19200, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32223253

ABSTRACT

The manipulation of liquid droplets on a specific surface with reversible wettability is of great importance for various applications from science to industry. Herein, the concept of a smart, flexible photodriven droplet motion (PDM) device with programmable wettability is designed using the 2D material of MXene film. Because of the MXene photothermal property, the Vaseline layer in the device is in transition between solid and liquid states under the heat transformation due to light illumination, thus attractively producing a reversible wettability for liquid motion with respect to sliding and pinning. Multifarious pathways for liquid motion could be designed through the flexibility of light illumination, which is a revolutionary enhancement in diverse liquid motion to form the desired pathways. In addition, we demonstrated liquid motion under illumination of the back face, which has a profound influence on applications, such as microfluidic systems, microengines, and liquid manipulation.

9.
Nanoscale ; 11(48): 23330-23337, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31793604

ABSTRACT

MXenes are a group of two-dimensional transition metal carbides/nitrides that have been widely used for many useful applications such as energy storage, catalysis and sensors. For large scale applications of MXenes, the ambient stability is a critical issue. However, the detailed degradation mechanism of MXenes remains largely unclear. Here, the oxidation mechanism of MXene flakes under ambient conditions has been studied using aberration corrected scanning transmission electron microscopy (STEM). The heterogeneous growth of titanium oxide has been observed in the vicinity of atomic defects on the MXene basal plane as well as on the edges of MXene flakes. C atoms are oxidized at Ti-vacancies to form amorphous carbon aggregations, while Ti cations are oxidized at the nearby sites with atomic steps/edges. The diffusion of both electrons and Ti cations is involved and the Ti-ion diffusion is prompted by an internal electric field intrinsically built up during oxidation. The anatase TiO2 nanoparticles preferentially grow along the {101} lattice plane. A loose orientation relationship between the anatase TiO2 and MXene was identified, showing that mostly the {101} plane of TiO2 nanocrystals is perpendicular to the Ti3C2-MXene {0001} basal plane. This work reveals at atomic resolution the oxidation mechanism of MXenes under ambient conditions and will shed light on the design and synthesis of more stable MXenes. It may also provide insights to develop a one-step method to synthesize hybrid structures of carbon supported TiO2 nanoparticles for future large scale applications.

10.
ACS Nano ; 12(12): 12464-12471, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30495925

ABSTRACT

High, stable, and modulatable ionic conductivity is important for many nanofluidic applications of layered two-dimensional (2D) membranes. In this study, we demonstrate a proton and ionic conductivity of the Ti3C2T x membrane that is orders of magnitude higher than that of bulk solution at low concentrations. Importantly, the membrane is highly stable in aqueous solution without any modification, due to the strong and attractive interlayer van der Waals interaction and weak electrostatic repulsive interaction. Furthermore, by exploiting the intrinsic photothermal property of MXene, we demonstrate that the ionic conductivity can be reversely, rapidly, and completely switched on or off with laser light. This study should prove MXene membrane as a suitable platform to study and utilize nanofluidic ion transport. It should also inspire future studies to manipulate the mass transport through 2D membranes using their inherent physicochemical properties.

11.
Phys Chem Chem Phys ; 18(3): 1992-7, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26686903

ABSTRACT

In this study, we demonstrated a self-deposition method to deposit Pt nanoparticles (NPs) on graphene woven fabrics (GWF) to improve the performance of graphene-on-silicon solar cells. The deposition of Pt NPs increased the work function of GWF and reduced the sheet resistance of GWF, thereby improving the power conversion efficiency (PCE) of graphene-on-silicon solar cells. The PCE (>10%) was further enhanced via solid electrolyte coating of the hybrid Schottky junction in the photoelectrochemical solar cells. These results suggest that the combination of self-deposition of Pt NPs and solid-state electrolyte coating of graphene-on-silicon is a promising way to produce high performance graphene-on-semiconductor solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...