Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Tech ; 20(5): 266-71, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19949700

ABSTRACT

We have developed a sequencing-based gene expression profiling assay at single-cell resolution by combining a modified single-cell whole transcriptome amplification method with the next generation sequencing technique, the SOLiD system. Using this assay, we have shown that blastomeres in a four-cell stage embryo have similar gene expression, which is compatible with the fact that they have similar developmental potential. We proved that compared with cDNA microarray technique, our single-cell cDNA SOLiD sequencing assay can detect expression of thousands of more genes. Moreover, for the genes detected by microarray and SOLiD sequencing, our assay detected new transcript variants for a large proportion of them, which confirms unambiguously at single-cell resolution that the transcriptome complexity is higher than expected traditionally. Finally, by using our assay to Dicer knockout (KO) and Ago2 KO oocytes, we showed that a significant amount of transposons were up-regulated abnormally in Dicer/Ago2 KO mature oocytes compared with wild-type controls.


Subject(s)
Gene Expression Profiling , Genetic Techniques , RNA, Messenger/metabolism , Sequence Analysis, RNA/methods , Animals , Chromosome Mapping , DNA, Complementary/metabolism , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis/methods , Oocytes/metabolism , Sequence Alignment
2.
J Ovarian Res ; 2: 19, 2009 Dec 16.
Article in English | MEDLINE | ID: mdl-20015364

ABSTRACT

BACKGROUND: Tumours with high proportions of differentiated cells are considered to be of a lower grade to those containing high proportions of undifferentiated cells. This property may be linked to the differentiation properties of stem cell-like populations within malignancies. We aim to identify molecular mechanism associated with the generation of tumours with differing grades from malignant stem cell populations with different differentiation potentials. In this study we assessed microRNA (miRNA) regulation in two populations of malignant Embryonal Carcinoma (EC) stem cell, which differentiate (NTera2) or remain undifferentiated (2102Ep) during tumourigenesis, and compared this to miRNA regulation in ovarian serous carcinoma (OSC) patient samples. METHODS: miRNA expression was assessed in NTera2 and 2102Ep cells in the undifferentiated and differentiated states and compared to that of OSC samples using miRNA qPCR. RESULTS: Our analysis reveals a substantial overlap between miRNA regulation in 2102Ep cells and OSC samples in terms of miRNA biosynthesis and expression of mature miRNAs, particularly those of the miR-17/92 family and clustering to chromosomes 14 and 19. In the undifferentiated state 2102Ep cells expressed mature miRNAs at up to 15,000 fold increased levels despite decreased expression of miRNA biosynthesis genes Drosha and Dicer. 2102Ep cells avoid differentiation, which we show is associated with consistent levels of expression of miRNA biosynthesis genes and mature miRNAs while expression of miRNAs clustering to chromosomes 14 and 19 is deemphasised. OSC patient samples displayed decreased expression of miRNA biosynthesis genes, decreased expression of mature miRNAs and prominent clustering to chromosome 14 but not 19. This indicates that miRNA biosynthesis and levels of miRNA expression, particularly from chromosome 14, are tightly regulated both in progenitor cells and in tumour samples. CONCLUSION: miRNA biosynthesis and expression of mature miRNAs, particularly the miR-17/92 family and those clustering to chromosomes 14 and 19, are highly regulated in both progenitor cells and tumour samples. Strikingly, 2102Ep cells are not simply malfunctioning but respond to differentiation specifically, a mechanism that is highly relevant to OSC samples. Our identification and future manipulation of these miRNAs may facilitate generation of lower grade malignancies from these high-grade cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...