Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 11: 1169073, 2023.
Article in English | MEDLINE | ID: mdl-37151587

ABSTRACT

Background: Spore Trap is an environmental detection technology, already used in the field of allergology to monitor the presence and composition of potentially inspirable airborne micronic bioparticulate. This device is potentially suitable for environmental monitoring of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in hospital, as well as in other high-risk closed environments. The aim of the present study is to investigate the accuracy of the Spore Trap system in detecting SARS-CoV-2 in indoor bioaerosol of hospital rooms. Methods: The Spore Trap was placed in hospital rooms hosting patients with documented SARS-CoV-2 infection (n = 36) or, as a negative control, in rooms where patients with documented negativity to a Real-Time Polymerase Chain Reaction molecular test for SARS-CoV-2 were admitted (n = 10). The monitoring of the bioaerosol was carried on for 24 h. Collected samples were analyzed by real-time polymerase chain reaction. Results: The estimated sensitivity of the Spore Trap device for detecting SARS-CoV-2 in an indoor environment is 69.4% (95% C.I. 54.3-84.4%), with a specificity of 100%. Conclusion: The Spore Trap technology is effective in detecting airborne SARS-CoV-2 virus with excellent specificity and high sensitivity, when compared to previous reports. The SARS-CoV-2 pandemic scenario has suggested that indoor air quality control will be a priority in future public health management and will certainly need to include an environmental bio-investigation protocol.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Hospitals , Pandemics , Hospitalization
2.
Clin Infect Pract ; 12: 100096, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34490417

ABSTRACT

BACKGROUND: Management of immunocompromised COVID-19 patients is the object of current debate. Accumulating evidence suggest that treatment with high-titer COVID-19 convalescent plasma (CCP) may be effective in this characteristic clinical scenario. CASE REPORT: A 52-years old immunocompromised female patient, previously treated with rituximab for low grade B-cell lymphoma, showed prolonged SARS-CoV-2 shedding and a long-term course of signs of severe COVID-19. A first cycle of treatment with remdesivir, a nucleotide analogue prodrug effective in inhibiting SARS-CoV-2 replication, did not provide fully and sustained clinical remission. A second hospitalization was deemed necessary after 10 days from the first hospital discharge due to recrudescence of symptoms of severe COVID-19 and the evidence of bilateral interstitial pneumonia at the chest-CT scan. Clinical and radiological findings completely disappeared after CCP administration. The viral culture confirmed the absence of SARS-CoV-2-related cytopathic effect. The clinical evaluation, performed two months after hospital discharge, was unremarkable. RESULTS: Findings from our case report suggest that the host T-cell specific response to SARS-CoV-2 is not sufficient to reduce viral load in the absence of neutralizing antibodies. Acquired immune antibodies and/or related components passively infused with CCP might help in boosting the plasma recipient response to the virus and promoting complete viral clearance. CONCLUSIONS: Independently from negative results in immunocompetent individuals, the potential effectiveness of CCP infusion in selected cohorts of patients with primary or secondary impaired immune response should be tested. Further research about mechanisms of host response in immunocompromised patients with SARS-CoV-2 infection is required.

SELECTION OF CITATIONS
SEARCH DETAIL
...