Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 190(4): 145, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36943510

ABSTRACT

The design and fabrication of a simple 3D-printed platform with embedded electrochemiluminescence (ECL) detection for sibutramine determination is described. The microfluidic platform was fabricated by the fused deposition 3D-printing technique with polylactic acid filament, facilitated by computer-aided design (CAD). A three-electrode system was integrated into the device using graphene carbon paste as a working electrode, Ag/AgCl wire as a reference, and a graphite rod as a counter electrode. A further modification was carried out by applying bimetallic Au-Pt nanoparticle-supported multi-walled carbon nanotubes (MWCNT-Au-Pt) on the working electrode surface to enhance the electrocatalytic performance by exploiting the unique properties of nanomaterials. The analytical feasibility of the CAD-ECL sensor was tested through its application for the determination of sibutramine in dietary supplements. Under the optimized conditions, based on the enhancing effect of luminol emission, the device exhibited a linear calibration curve of the logarithmic sibutramine concentration versus ECL intensity in the range 5 × 10-3 to 1 ng mL-1. The limit of detection was 3 pg mL-1 with a relative standard deviation of 1.7% (n = 15). The 3D-printed prototype can be successfully applied to a small-scale analysis in a simple and cost-effective approach.


Subject(s)
Graphite , Nanotubes, Carbon , Photometry , Lab-On-A-Chip Devices , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL
...