Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 69(6): 1369-1392, 2021 06.
Article in English | MEDLINE | ID: mdl-33484204

ABSTRACT

Hedgehog morphogens control fundamental cellular processes during tissue development and regeneration. In the central nervous system (CNS), Hedgehog signaling has been implicated in oligodendrocyte and myelin production, where it functions in a concerted manner with other pathways. Since androgen receptor (AR) plays a key role in establishing the sexual phenotype of myelin during development and is required for spontaneous myelin regeneration in the adult CNS, we hypothesized the existence of a possible coordination between Hedgehog and androgen signals in oligodendrocyte and myelin production. Here, we report complementary activities of both pathways during early postnatal oligodendrogenesis further revealing that persistent Hedgehog signaling activation impedes myelin production. The data also uncover prominent pro-myelinating activity of testosterone and involvement of AR in the control of neural stem cell commitment toward the oligodendroglial lineage. In the context of CNS demyelination, we provide evidence for the functional cooperation of the pathways leading to acceleration of myelin regeneration that might be related to their respective role on microglial and astroglial responses, higher preservation of axonal integrity, lower neuroinflammation, and functional improvement of animals in an immune model of CNS demyelination. Strong decreases of deleterious cytokines in the CNS (GM-CSF, TNF-α, IL-17A) and spleen (IL-2, IFN-γ) stand as unique features of the combined drugs while the potent therapeutic activity of testosterone on peripheral immune cells contributes to increase tolerogenic CD11c+ dendritic cells, reduce the clonal expansion of conventional CD4+ T cells and increase CD4+ Foxp3+ regulatory T cells. Altogether, these data might open promising perspectives for demyelinating diseases.


Subject(s)
Signal Transduction , Androgens , Animals , Demyelinating Diseases , Hedgehog Proteins , Myelin Sheath , Neuroinflammatory Diseases , Oligodendroglia , Testosterone
2.
FASEB J ; 34(10): 13641-13653, 2020 10.
Article in English | MEDLINE | ID: mdl-32862444

ABSTRACT

Leucine-rich repeat and immunoglobin-domain containing (LRRIG) proteins that are commonly involved in protein-protein interactions play important roles in nervous system development and maintenance. LINGO-1, one of this family members, is characterized as a negative regulator of neuronal survival, axonal regeneration, and oligodendrocyte precursor cell (OPC) differentiation into mature myelinating oligodendrocytes. Three LINGO-1 homologs named LINGO-2, LINGO-3, and LINGO-4 have been described. However, their relative expression and functions remain unexplored. Here, we show by in situ hybridization and quantitative polymerase chain reaction that the transcripts of LINGO homologs are differentially expressed in the central nervous system. The immunostaining of brain slices confirmed this observation and showed the co-expression of LINGO-1 with its homologs. Using BRET (bioluminescence resonance energy transfer) analysis, we demonstrate that LINGO proteins can physically interact with each of the other ones with comparable affinities and thus form the oligomeric states. Furthermore, co-immunoprecipitation experiments indicate that LINGO proteins form heterocomplexes in both heterologous systems and cortical neurons. Since LINGO-1 is a promising target for the treatment of demyelinating diseases, its ability to form heteromeric complexes reveals a new level of complexity in its functioning and opens the way for new strategies to achieve diverse and nuanced LINGO-1 regulation.


Subject(s)
Brain/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Protein Multimerization , Animals , HEK293 Cells , Humans , Membrane Proteins/genetics , Mice , Nerve Tissue Proteins/genetics , Protein Binding
3.
Front Cell Neurosci ; 14: 79, 2020.
Article in English | MEDLINE | ID: mdl-32317939

ABSTRACT

Myelination is an essential process that consists of the ensheathment of axons by myelin. In the central nervous system (CNS), myelin is synthesized by oligodendrocytes. The proliferation, migration, and differentiation of oligodendrocyte precursor cells constitute a prerequisite before mature oligodendrocytes extend their processes around the axons and progressively generate a multilamellar lipidic sheath. Although myelination is predominately driven by oligodendrocytes, the other glial cells including astrocytes and microglia, also contribute to this process. The present review is an update of the most recent emerging mechanisms involving astrocyte and microglia in myelin production. The contribution of these cells will be first described during developmental myelination that occurs in the early postnatal period and is critical for the proper development of cognition and behavior. Then, we will report the novel findings regarding the beneficial or deleterious effects of astroglia and microglia, which respectively promote or impair the endogenous capacity of oligodendrocyte progenitor cells (OPCs) to induce spontaneous remyelination after myelin loss. Acute delineation of astrocyte and microglia activities and cross-talk should uncover the way towards novel therapeutic perspectives aimed at recovering proper myelination during development or at breaking down the barriers impeding the regeneration of the damaged myelin that occurs in CNS demyelinating diseases.

4.
Development ; 146(9)2019 05 02.
Article in English | MEDLINE | ID: mdl-31048318

ABSTRACT

Myelination leads to the formation of myelin sheaths surrounding neuronal axons and is crucial for function, plasticity and repair of the central nervous system (CNS). It relies on the interaction of the axons and the oligodendrocytes: the glial cells producing CNS myelin. Here, we have investigated the role of a crucial component of the Sonic hedgehog (Shh) signalling pathway, the co-receptor Boc, in developmental and repairing myelination. During development, Boc mutant mice display a transient decrease in oligodendroglial cell density together with delayed myelination. Despite recovery of oligodendroglial cells at later stages, adult mutants still exhibit a lower production of myelin basic protein correlated with a significant decrease in the calibre of callosal axons and a reduced amount of the neurofilament NF-M. During myelin repair, the altered OPC differentiation observed in the mutant is reminiscent of the phenotype observed after blockade of Shh signalling. In addition, Boc mutant microglia/macrophages unexpectedly exhibit the apparent inability to transition from a highly to a faintly ramified morphology in vivo Altogether, these results identify Boc as an important component of myelin formation and repair.


Subject(s)
Immunoglobulin G/metabolism , Myelin Sheath/metabolism , Receptors, Cell Surface/metabolism , Animals , Blotting, Western , Cell Differentiation/drug effects , Cells, Cultured , Cuprizone/pharmacology , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Immunoglobulin G/genetics , Intermediate Filaments/drug effects , Intermediate Filaments/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microglia/metabolism , Myelin Sheath/drug effects , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Receptors, Cell Surface/genetics
5.
Front Cell Neurosci ; 12: 305, 2018.
Article in English | MEDLINE | ID: mdl-30237763

ABSTRACT

Since the discovery of its role as a morphogen directing ventral patterning of the spinal cord, the secreted protein Sonic Hedgehog (Shh) has been implicated in a wide array of events contributing to the development, maintenance and repair of the central nervous system (CNS). One of these events is the generation of oligodendrocytes, the glial cells of the CNS responsible for axon myelination. In embryo, the first oligodendroglial cells arise from the ventral ventricular zone in the developing brain and spinal cord where Shh induces the basic helix-loop-helix transcription factors Olig1 and Olig2 both necessary and sufficient for oligodendrocyte production. Later on, Shh signaling participates in the production of oligodendroglial cells in the dorsal ventricular-subventricular zone in the postnatal forebrain. Finally, the modulation of Hedgehog signaling activity promotes the repair of demyelinated lesions. This mini-review article focuses on the Shh-dependent molecular mechanisms involved in the spatial and temporal control of oligodendrocyte lineage appearance. The apparent intricacy of the roles of two essential components of Shh signaling, Smoothened and Gli1, in the postnatal production of myelin and its regeneration following a demyelinating event is also highlighted. A deeper understanding of the implication of each of the components that regulate oligodendrogenesis and myelination should beneficially influence the therapeutic strategies in the field of myelin diseases.

6.
J Dev Biol ; 4(3)2016 Sep 08.
Article in English | MEDLINE | ID: mdl-29615592

ABSTRACT

The Hedgehog morphogen aroused an enormous interest since it was characterized as an essential signal for ventral patterning of the spinal cord two decades ago. The pathway is notably implicated in the initial appearance of the progenitors of oligodendrocytes (OPCs), the glial cells of the central nervous system which after maturation are responsible for axon myelination. In accordance with the requirement for Hedgehog signaling in ventral patterning, the earliest identifiable cells in the oligodendrocyte lineage are derived from the ventral ventricular zone of the developing spinal cord and brain. Here, we present the current knowledge about the involvement of Hedgehog signaling in the strict spatial and temporal regulation which characterizes the initiation and progression of the oligodendrocyte lineage. We notably describe the ability of the Hedgehog signaling to tightly orchestrate the appearance of specific combinations of genes in concert with other pathways. We document the molecular mechanisms controlling Hedgehog temporal activity during OPC specification. The contribution of the pathway to aspects of OPC development different from their specification is also highlighted especially in the optic nerve. Finally, we report the data demonstrating that Hedgehog signaling-dependency is not a universal situation for oligodendrocyte generation as evidenced in the dorsal spinal cord in contrast to the dorsal forebrain.

SELECTION OF CITATIONS
SEARCH DETAIL
...