Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 12: 715732, 2021.
Article in English | MEDLINE | ID: mdl-34413881

ABSTRACT

Livestock is heavily affected by trypanosomosis in Africa. Through strong selective pressure, several African indigenous breeds of cattle and small ruminants have acquired varying degrees of tolerance against this disease. In this study, we combined LFMM and PCAdapt for analyzing two datasets of goats from West-Central Africa and East Africa, respectively, both comprising breeds with different assumed levels of trypanotolerance. The objectives were (i) to identify molecular signatures of selection related to trypanotolerance; and (ii) to guide an optimal sampling for subsequent studies. From 33 identified signatures, 18 had been detected previously in the literature as being mainly associated with climatic adaptations. The most plausible signatures of trypanotolerance indicate the genes DIS3L2, COPS7B, PD5A, UBE2K, and UBR1. The last gene is of particular interest since previous literature has already identified E3-ubiquitin ligases as playing a decisive role in the immune response. For following-up on these findings, the West-Central African area appears particularly relevant because of (i) a clear parasitic load gradient related to a humidity gradient, and (ii) still restricted admixture levels between goat breeds. This study illustrates the importance of protecting local breeds, which have retained unique allelic combinations conferring their remarkable adaptations.

2.
Genes (Basel) ; 11(1)2020 01 04.
Article in English | MEDLINE | ID: mdl-31947936

ABSTRACT

Knowledge of population structure is essential to improve the management and conservation of farm animal genetic resources. Microsatellites, which have long been popular for this type of analysis, are more and more neglected in favor of whole-genome single nucleotide polymorphism (SNP) chips that are now available for the main farmed animal species. In this study, we compared genetic patterns derived from microsatellites to that inferred by SNPs, considering three pairs of datasets of sheep and cattle. Population genetic differentiation analyses (Fixation index, FST), as well as STRUCTURE analyses showed a very strong consistency between the two types of markers. Microsatellites gave pictures that were largely concordant with SNPs, although less accurate. The best concordance was found in the most complex dataset, which included 17 French sheep breeds (with a Pearson correlation coefficient of 0.95 considering the 136 values of pairwise FST, obtained with both types of markers). The use of microsatellites reduces the cost and the related analyses do not require specific computer equipment (i.e., information technology (IT) infrastructure able to provide adequate computing and storage capacity). Therefore, this tool may still be a very appropriate solution to evaluate, in a first stage, the general state of livestock at national scales. At a time when local breeds are disappearing at an alarming rate, it is urgent to improve our knowledge of them, in particular by promoting tools accessible to the greatest number.


Subject(s)
Animals, Domestic/genetics , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics , Animal Husbandry/methods , Animals , Cattle/genetics , Genetic Variation/genetics , Genome/genetics , Genotype , Linkage Disequilibrium/genetics , Oligonucleotide Array Sequence Analysis/methods , Phylogeny , Sheep/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...