Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(2): e10888, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343572

ABSTRACT

High alpine regions are threatened but understudied ecosystems that harbor diverse endemic species, making them an important biome for testing the role of environmental factors in driving functional trait-mediated community assembly processes. We tested the hypothesis that plant community assembly along a climatic and elevation gradient is influenced by shifts in habitat suitability, which drive plant functional, phylogenetic, and spectral diversity. In a high mountain system (2400-3500 m) Región Metropolitana in the central Chilean Andes (33°S, 70°W). We surveyed vegetation and spectroscopic reflectance (400-2400 nm) to quantify taxonomic, phylogenetic, functional, and spectral diversity at five sites from 2400 to 3500 m elevation. We characterized soil attributes and processes by measuring water content, carbon and nitrogen, and net nitrogen mineralization rates. At high elevation, colder temperatures reduced available soil nitrogen, while at warmer, lower elevations, soil moisture was lower. Metrics of taxonomic, functional, and spectral alpha diversity peaked at mid-elevations, while phylogenetic species richness was highest at low elevation. Leaf nitrogen increased with elevation at the community level and within individual species, consistent with global patterns of increasing leaf nitrogen with colder temperatures. The increase in leaf nitrogen, coupled with shifts in taxonomic and functional diversity associated with turnover in lineages, indicate that the ability to acquire and retain nitrogen in colder temperatures may be important in plant community assembly in this range. Such environmental filters have important implications for forecasting shifts in alpine plant communities under a warming climate.

2.
Ecol Monogr ; 92(1): e01488, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35864994

ABSTRACT

Imaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In terrestrial systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic-functional composition of plant communities would be detectable with remote sensing and could be used to predict belowground plant and soil processes in two grassland biodiversity experiments: the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska. We tested whether aboveground vegetation chemistry and productivity, as detected from airborne sensors, predict soil properties, microbial processes and community composition. Imaging spectroscopy data were used to map aboveground biomass, green vegetation cover, functional traits and phylogenetic-functional community composition of vegetation. We examined the relationships between the image-derived variables and soil carbon and nitrogen concentration, microbial community composition, biomass and extracellular enzyme activity, and soil processes, including net nitrogen mineralization. In the BioDIV experiment-which has low overall diversity and productivity despite high variation in each-belowground processes were driven mainly by variation in the amount of organic matter inputs to soils. As a consequence, soil respiration, microbial biomass and enzyme activity, and fungal and bacterial composition and diversity were significantly predicted by remotely sensed vegetation cover and biomass. In contrast, at Wood River-where plant diversity and productivity were consistently higher-belowground processes were driven mainly by variation in the quality of aboveground inputs to soils. Consequently, remotely sensed functional, chemical and phylogenetic composition of vegetation predicted belowground extracellular enzyme activity, microbial biomass, and net nitrogen mineralization rates but aboveground biomass (or cover) did not. The contrasting associations between the quantity (productivity) and quality (composition) of aboveground inputs with belowground soil attributes provide a basis for using imaging spectroscopy to understand belowground processes across productivity gradients in grassland systems. However, a mechanistic understanding of how above and belowground components interact among different ecosystems remains critical to extending these results broadly.

3.
Tree Physiol ; 40(3): 377-390, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32031662

ABSTRACT

Hyperspectral reflectance tools have been used to detect multiple pathogens in agricultural settings and single sources of infection or broad declines in forest stands. However, differentiation of any one disease from other sources of tree stress is integral for stand and landscape-level applications in mixed species systems. We tested the ability of spectral models to differentiate oak wilt, a fatal disease in oaks caused by Bretziella fagacearum ``Bretz'', from among other mechanisms of decline. We subjected greenhouse-grown oak seedlings (Quercus ellipsoidalis ``E.J. Hill'' and Quercus macrocarpa ``Michx.'') to chronic drought or inoculation with the oak wilt fungus or bur oak blight fungus (Tubakia iowensis ``T.C. Harr. & D. McNew''). We measured leaf and canopy spectroscopic reflectance (400-2400 nm) and instantaneous photosynthetic and stomatal conductance rates, then used partial least-squares discriminant analysis to predict treatment from hyperspectral data. We detected oak wilt before symptom appearance, and classified the disease with high accuracy in symptomatic leaves. Classification accuracy from spectra increased with declines in photosynthetic function in oak wilt-inoculated plants. Wavelengths diagnostic of oak wilt were only found in non-visible spectral regions and are associated with water status, non-structural carbohydrates and photosynthetic mechanisms. We show that hyperspectral models can differentiate oak wilt from other causes of tree decline and that detection is correlated with biological mechanisms of oak wilt infection and disease progression. We also show that within the canopy, symptom heterogeneity can reduce detection, but that symptomatic leaves and tree canopies are suitable for highly accurate diagnosis. Remote application of hyperspectral tools can be used for specific detection of disease across a multi-species forest stand exhibiting multiple stress symptoms.


Subject(s)
Mycoses , Quercus , Droughts , Forests , Humans , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...