Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
PLoS One ; 13(11): e0207476, 2018.
Article in English | MEDLINE | ID: mdl-30440042

ABSTRACT

Observing others' actions desynchronizes electroencephalographic (EEG) rhythms and modulates corticospinal excitability as assessed by transcranial magnetic stimulation (TMS). However, it remains unclear if these measures reflect similar neurofunctional mechanisms at the individual level. In the present study, a within-subject experiment was designed to assess these two neurophysiological indexes and to quantify their mutual correlation. Participants observed reach-to-grasp actions directed towards a small (precision grip) or a large object (power grip). We focused on two specific time points for both EEG and TMS. The first time point (t1) coincided with the maximum hand aperture, i.e. the moment at which a significant modulation of corticospinal excitability is expected. The second (t2), coincided with the EEG resynchronization occurring at the end of the action, i.e. the moment at which a hypothetic minimum for action observation effect is expected. Results showed a Mu rhythm bilateral desynchronization at t1 with differential resynchronization at t2 in the two hemispheres. Beta rhythm was more desynchronized in the left hemisphere at both time points. These EEG differences, however, were not influenced by grip type. Conversely, motor potentials evoked by TMS in an intrinsic hand muscle revealed an interaction effect of grip and time. No significant correlations between Mu/Beta rhythms and motor evoked potentials were found. These findings are discussed considering the spatial and temporal resolution of the two investigated techniques and argue over two alternative explanations: i. each technique provides different measures of the same process or ii. they describe complementary features of the action observation network in humans.


Subject(s)
Brain Waves/physiology , Cortical Excitability/physiology , Fingers/physiology , Hand/physiopathology , Adult , Biomechanical Phenomena , Brain Mapping , Electroencephalography , Electromyography , Female , Humans , Male , Nails/physiology , Transcranial Magnetic Stimulation
2.
J ECT ; 34(3): 182-192, 2018 09.
Article in English | MEDLINE | ID: mdl-30095681

ABSTRACT

The study of addiction and impulsion control disorders has shown that behaviors of seeking and consumption of addictive substances are subserved by neurobiological alterations specifically related to brain networks for reward, stress, and executive control, representing the brain's adaptation to the continued use of an addictive substance. In parallel, studies using neuromodulation techniques such as transcranial direct current stimulation (tDCS) have demonstrated promising effects in modulating cognitive and motor functions. This review aims to describe the neurobiology of addiction and some of the most relevant cognitive models of addictive behavior and to clarify how tDCS application modulates the intake and craving for several addictive substances, such as food, alcohol, nicotine, cocaine, crack, methamphetamine, and cannabis. We also discuss the positive and null outcomes of the use of this neuromodulatory technique in the treatment of addiction disorders resulting from the use of these substances. The reviewed findings lead us to conclude that tDCS interventions hold several promising clinical avenues in addiction and impulsive control. However, methodological investigations are necessary for undercover optimal parameters before implementing its clinical application.


Subject(s)
Disruptive, Impulse Control, and Conduct Disorders/therapy , Substance-Related Disorders/therapy , Transcranial Direct Current Stimulation/methods , Cognition , Craving , Disruptive, Impulse Control, and Conduct Disorders/psychology , Humans , Substance-Related Disorders/psychology
3.
Atten Percept Psychophys ; 77(6): 1813-40, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26139152

ABSTRACT

Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulatory technique with increasing popularity in the fields of basic research and rehabilitation. It is an affordable and safe procedure that is beginning to be used in the clinic, and is a tool with potential to contribute to the understanding of neural mechanisms in the fields of psychology, neuroscience, and medical research. This review presents examples of investigations in the fields of perception, basic sensory processes, and sensory rehabilitation that employed tDCS. We highlight some of the most relevant efforts in this area and discuss possible limitations and gaps in contemporary tDCS research. Topics include the five senses, pain, and multimodal integration. The present work aims to present the state of the art of this field of research and to inspire future investigations of perception using tDCS.


Subject(s)
Brain/physiology , Perception/physiology , Transcranial Direct Current Stimulation/methods , Humans , Sensation Disorders/rehabilitation
4.
Neurosci Lett ; 594: 12-6, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25805457

ABSTRACT

The dorsolateral prefrontal cortex (DLPFC) is involved in the cognitive appraisal and modulation of the pain experience. In this sham-controlled study, with healthy volunteers, we used bi-hemispheric transcranial direct current stimulation (tDCS) over the DLPFC to assess emotional reactions elicited by pain observation. Left-cathodal/right-anodal tDCS decreased valence and arousal evaluations compared to other tDCS conditions. Compared to sham condition, both left-cathodal/right-anodal and left-anodal/right-cathodal tDCS decreased hostility, sadness and self-pain perception. These decreased sensations after both active tDCS suggest a common role for left and right DLPFC in personal distress modulation. However, the differences in arousal and valence evaluations point to distinct roles of lateralized DLPFC in cognitive empathy, probably through distinct emotion regulation mechanisms.


Subject(s)
Empathy , Pain , Prefrontal Cortex/physiology , Adolescent , Adult , Affect , Arousal , Double-Blind Method , Emotions , Female , Functional Laterality , Humans , Male , Photic Stimulation , Pupil/physiology , Transcranial Direct Current Stimulation , Visual Perception , Young Adult
5.
Psychol. neurosci. (Impr.) ; 7(2): 175-180, Jan.-June 2014.
Article in English | LILACS | ID: lil-718334

ABSTRACT

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique. Because of its low cost, ease of use, safety, and portability, tDCS has been increasingly investigated for therapeutic purposes in neuropsychiatric disorders and in experimental neuropsychological studies with healthy volunteers. These experiments on healthy cognition have shown significant effects on working memory, decision-making, and language. Such promising results have fomented reflections on studying tDCS to enhance or modify normal cognitive function, a concept described by some as "cosmetic" neurology. As the field evolves, discussing whether the use of tDCS in these situations is appropriate is important, including how bioethical principles may help resolve these challenges. In this article, we present some examples of the effects of tDCS on cognition in healthy participants as a starting point for this ethical debate. We envision a futuristic "Brain Boosting" tDCS clinic that specializes in cosmetic neurology and cognitive enhancement. Using the typical cases of a fictitious Dr. Icarus as a discussion starting point, we raise some issues that are both humorous and provocative about the use of tDCS in healthy people. The importance of this work is to ask relatively new questions regarding cosmetic neurology in the field of neuromodulation and discuss the related ethical conflicts...


Subject(s)
Humans , Cognition , Ethics , Transcranial Magnetic Stimulation/trends
6.
Psychol. neurosci. (Impr.) ; 7(2): 175-180, Jan.-June 2014.
Article in English | Index Psychology - journals | ID: psi-62652

ABSTRACT

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique. Because of its low cost, ease of use, safety, and portability, tDCS has been increasingly investigated for therapeutic purposes in neuropsychiatric disorders and in experimental neuropsychological studies with healthy volunteers. These experiments on healthy cognition have shown significant effects on working memory, decision-making, and language. Such promising results have fomented reflections on studying tDCS to enhance or modify normal cognitive function, a concept described by some as "cosmetic" neurology. As the field evolves, discussing whether the use of tDCS in these situations is appropriate is important, including how bioethical principles may help resolve these challenges. In this article, we present some examples of the effects of tDCS on cognition in healthy participants as a starting point for this ethical debate. We envision a futuristic "Brain Boosting" tDCS clinic that specializes in cosmetic neurology and cognitive enhancement. Using the typical cases of a fictitious Dr. Icarus as a discussion starting point, we raise some issues that are both humorous and provocative about the use of tDCS in healthy people. The importance of this work is to ask relatively new questions regarding cosmetic neurology in the field of neuromodulation and discuss the related ethical conflicts.(AU)


Subject(s)
Humans , Transcranial Magnetic Stimulation/trends , Ethics , Cognition
7.
Front Hum Neurosci ; 7: 256, 2013.
Article in English | MEDLINE | ID: mdl-23761755

ABSTRACT

Motor system neural networks are activated during movement imagery, observation and execution, with a neural signature characterized by suppression of the Mu rhythm. In order to investigate the origin of this neurophysiological marker, we tested whether transcranial direct current stimulation (tDCS) modifies Mu rhythm oscillations during tasks involving observation and imagery of biological and non-biological movements. We applied tDCS (anodal, cathodal, and sham) in 21 male participants (mean age 23.8 ± 3.06), over the left M1 with a current of 2 mA for 20 min. Following this, we recorded the EEG at C3, C4, and Cz and surrounding C3 and C4 electrodes. Analyses of C3 and C4 showed significant effects for biological vs. non-biological movement (p = 0.005), and differential hemisphere effects according to the type of stimulation (p = 0.04) and type of movement (p = 0.02). Analyses of surrounding electrodes revealed significant interaction effects considering type of stimulation and imagery or observation of biological or non-biological movement (p = 0.03). The main findings of this study were (1) Mu desynchronization during biological movement of the hand region in the contralateral hemisphere after sham tDCS; (2) polarity-dependent modulation effects of tDCS on the Mu rhythm, i.e., anodal tDCS led to Mu synchronization while cathodal tDCS led to Mu desynchronization during movement observation and imagery (3) specific focal and opposite inter-hemispheric effects, i.e., contrary effects for the surrounding electrodes during imagery condition and also for inter-hemispheric electrodes (C3 vs. C4). These findings provide insights into the cortical oscillations during movement observation and imagery. Furthermore, it shows that tDCS can be highly focal when guided by a behavioral task.

SELECTION OF CITATIONS
SEARCH DETAIL
...