Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genomics ; 49(1): 1-13, 1998 Apr 01.
Article in English | MEDLINE | ID: mdl-9570943

ABSTRACT

The gene-rich telomeric region of 21q harbors several loci relevant to human diseases including autoimmune polyglandular disease type I, nonsyndromic deafness, Knobloch syndrome, holoprosencephaly, and bipolar affective disorder. A contig of genomic clones in this region would facilitate the isolation of these genes. However, distal 21q22.3 has yet been poorly mapped, presumably due to the presence of sequences that are underrepresented in yeast artificial chromosome (YAC) libraries. We generated a framework of YACs and used these clones as starting points for the isolation of a combination of bacterial artificial chromosome clones, P1-derived artificial chromosome clones, and cosmid clones by chromosome walking procedures. These studies resulted in the construction of a high-resolution contig map spanning the 2.5-Mb region from PFKL to the telomere, approximately 2 Mb of which are covered by ready-to-sequence contigs. Within this map we determined the location and relative distance of 21 markers. These include 9 established genetic markers, the order of which is cen-PFKL-D21S154-D21S170-D21S171-D21S1903- D21S1897- D21S112-D21S1446-D21S1575-tel. Moreover, we established the precise map position of 13 genes and 4 ESTs including the recently isolated genes C21ORF2, SMT3H1, RNA editing deaminase 1 (ADARB1), folate transporter (SLC19A1), COL18A1, lanosterol synthase (LSS-PEN), pericentrin (PCNT), and arginine methyltransferase (HRMT1L1). This integrated map provides a useful resource for the mapping and isolation of disease genes and for the construction of a complete transcription map of distal 21q as well as for large-scale sequencing efforts.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Human, Pair 21 , Chromosomes, Artificial, Yeast , Cloning, Molecular , Cosmids , Genetic Markers , Humans , Restriction Mapping
2.
Mamm Genome ; 8(5): 342-5, 1997 May.
Article in English | MEDLINE | ID: mdl-9107679

ABSTRACT

The alpha1(VI) and alpha2(VI) chains of type VI collagen (nonfibrillar) are highly similar and are encoded by single-copy genes in close proximity on human Chromosome (Chr) 21q22.3, a gene-rich region that has proved refractory to cloning. For the alpha1(VI) chain, only the regions encoding the triple-helical and the promoter have been characterized hitherto.To facilitate our study of the role of this gene in the phenotype of Down syndrome, we have cloned and sequenced the amino- and carboxyl-terminal globular domains of COL6A1. The amino-terminal domain consists of seven exons and the carboxyl-terminal globular domain of nine exons. Together with the exons of the triple-helical domain, COL6A1 is encoded by a total of 36 exons spanning approximately 30 kb. Comparison of the genomic organization of COL6A1 and COL6A2 revealed that despite the similarity within their triple-helical domains, the intron-exon structures of their globular domains differ markedly. Conservation is limited to the exons encoding amino acids immediately adjacent to the triple-helical region, including the cysteine residues essential for the structure of mature collagen VI. The intron-exon structures of these two genes are highly similar to the collagen VI genes of chicken. These data suggest that COL6A1 and COL6A2 arose from a gene duplication before the divergence of the reptilian and mammalian lineages.


Subject(s)
Collagen/chemistry , Collagen/genetics , Evolution, Molecular , Amino Acid Sequence , Animals , Base Sequence , Chickens , Chromosome Mapping , DNA, Complementary/genetics , Exons , Humans , Introns , Molecular Sequence Data , Molecular Structure , Multigene Family , Species Specificity
3.
Genomics ; 40(2): 362-6, 1997 Mar 01.
Article in English | MEDLINE | ID: mdl-9119407

ABSTRACT

cDNA selection was used to isolate coding sequences from cosmids mapping to the gene-rich telomeric region of human chromosome 21q. A novel cDNA, termed SMT3A, was isolated and mapped between the loci PFKL and D21S171, about 2.2 Mb proximal to the telomere. The predicted protein of 103 amino acids appears to be a homologue of the Saccharomyces cerevisiae SMT3 protein, whose gene was previously isolated as a suppressor of mutations in the MIF2 gene. The yeast MIF2 gene encodes an essential centromeric protein and shows homology to mammalian CENP-C, an integral component of active kinetochores. SMT3A was found to be highly homologous to two other recently isolated human genes, suggesting the presence of a new gene family. Homologous sequences were also found in protozoa, metazoa, and plants. Moreover, all predicted proteins show significant homology to ubiquitin. The proposed role of yeast SMT3 as centromeric protein and the strong evolutionary conservation of the SMT3A gene suggest an involvement of the encoded protein in the function and/or structure of the eukaryotic kinetochore.


Subject(s)
Chromosomes, Human, Pair 21/genetics , Repressor Proteins/genetics , Restriction Mapping , Saccharomyces cerevisiae Proteins , Sequence Homology, Nucleic Acid , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA, Complementary , Gene Expression , Humans , Molecular Sequence Data , Multigene Family/genetics , Organ Specificity , Phylogeny , RNA, Messenger/analysis , Saccharomyces cerevisiae/genetics , Sequence Homology, Amino Acid , Small Ubiquitin-Related Modifier Proteins
4.
J Cell Biochem ; 63(1): 51-60, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8891903

ABSTRACT

M-14 human melanoma cells, following severe hyperthermic exposures, synthesized a heat-shock protein of 66 kDa (hsp 66), in addition to the major "classic" heat-shock proteins. This hsp 66 was not expressed following mild hyperthermic exposures sufficient to trigger the synthesis of the other heat-shock proteins. The induction of hsp 66 was observed also in Li human glioma cells treated at 45 degrees C for 20 min. By contrast, hsp 66 was not induced in seven other human cell lines (both melanoma and nonmelanoma) when they were subjected to the same hyperthermic treatment. Immunological recognition experiments showed that hsp 66 cross-reacted with the inducible hsp 72, but not with the constitutive hsp 73. The possibility that hsp 66 is a breakdown product of hsp 72 was ruled out by the fact that Poly(A)+ RNA extracted from cells treated at 45 degrees C for 20 min was able to direct the synthesis of hsp 66 (together with hsp 72) in a message-dependent rabbit reticulocyte lysate, as well as in microinjected Xenopus oocytes. By contrast, only the hsp 72 was expressed using Poly(A)+ RNA extracted from cells heated at 42 degrees C for 1 h. Affinity chromatography experiments on ATP-agarose showed that hsp 66 did not bind ATP in vitro. hsp 66 was localized both in the cytoplasm (cytosol, mitochondria, and microsome fraction) and in the nuclei of cells recovered from a severe heat shock: this intracellular distribution closely corresponded to that of hsp 72. The nuclear-associated hsp 66 was found to be tightly bound to nuclear structures and could not be extracted by incubation in ATP-containing buffer.


Subject(s)
HSP70 Heat-Shock Proteins/chemistry , Heat-Shock Proteins/chemistry , Animals , Chromatography, Affinity , Electrophoresis, Polyacrylamide Gel , HSP70 Heat-Shock Proteins/immunology , HSP72 Heat-Shock Proteins , Heat-Shock Proteins/immunology , Humans , Molecular Weight , Rabbits , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...