Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 37(Suppl_1): i426-i433, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34252950

ABSTRACT

MOTIVATION: Astrocytes, the most abundant glial cells in the mammalian brain, have an instrumental role in developing neuronal circuits. They contribute to the physical structuring of the brain, modulating synaptic activity and maintaining the blood-brain barrier in addition to other significant aspects that impact brain function. Biophysically, detailed astrocytic models are key to unraveling their functional mechanisms via molecular simulations at microscopic scales. Detailed, and complete, biological reconstructions of astrocytic cells are sparse. Nonetheless, data-driven digital reconstruction of astroglial morphologies that are statistically identical to biological counterparts are becoming available. We use those synthetic morphologies to generate astrocytic meshes with realistic geometries, making it possible to perform these simulations. RESULTS: We present an unconditionally robust method capable of reconstructing high fidelity polygonal meshes of astroglial cells from algorithmically-synthesized morphologies. Our method uses implicit surfaces, or metaballs, to skin the different structural components of astrocytes and then blend them in a seamless fashion. We also provide an end-to-end pipeline to produce optimized two- and three-dimensional meshes for visual analytics and simulations, respectively. The performance of our pipeline has been assessed with a group of 5000 astroglial morphologies and the geometric metrics of the resulting meshes are evaluated. The usability of the meshes is then demonstrated with different use cases. AVAILABILITY AND IMPLEMENTATION: Our metaball skinning algorithm is implemented in Blender 2.82 relying on its Python API (Application Programming Interface). To make it accessible to computational biologists and neuroscientists, the implementation has been integrated into NeuroMorphoVis, an open source and domain specific package that is primarily designed for neuronal morphology visualization and meshing. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Astrocytes , Software , Algorithms , Animals , Computer Simulation , Neurons
2.
Bioinformatics ; 36(Suppl_1): i534-i541, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32657395

ABSTRACT

MOTIVATION: Accurate morphological models of brain vasculature are key to modeling and simulating cerebral blood flow in realistic vascular networks. This in silico approach is fundamental to revealing the principles of neurovascular coupling. Validating those vascular morphologies entails performing certain visual analysis tasks that cannot be accomplished with generic visualization frameworks. This limitation has a substantial impact on the accuracy of the vascular models employed in the simulation. RESULTS: We present VessMorphoVis, an integrated suite of toolboxes for interactive visualization and analysis of vast brain vascular networks represented by morphological graphs segmented originally from imaging or microscopy stacks. Our workflow leverages the outstanding potentials of Blender, aiming to establish an integrated, extensible and domain-specific framework capable of interactive visualization, analysis, repair, high-fidelity meshing and high-quality rendering of vascular morphologies. Based on the initial feedback of the users, we anticipate that our framework will be an essential component in vascular modeling and simulation in the future, filling a gap that is at present largely unfulfilled. AVAILABILITY AND IMPLEMENTATION: VessMorphoVis is freely available under the GNU public license on Github at https://github.com/BlueBrain/VessMorphoVis. The morphology analysis, visualization, meshing and rendering modules are implemented as an add-on for Blender 2.8 based on its Python API (application programming interface). The add-on functionality is made available to users through an intuitive graphical user interface, as well as through exhaustive configuration files calling the API via a feature-rich command line interface running Blender in background mode. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Brain , Software , Computer Simulation , Skeleton , Workflow
3.
Bioinformatics ; 34(13): i574-i582, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29949998

ABSTRACT

Motivation: From image stacks to computational models, processing digital representations of neuronal morphologies is essential to neuroscientific research. Workflows involve various techniques and tools, leading in certain cases to convoluted and fragmented pipelines. The existence of an integrated, extensible and free framework for processing, analysis and visualization of those morphologies is a challenge that is still largely unfulfilled. Results: We present NeuroMorphoVis, an interactive, extensible and cross-platform framework for building, visualizing and analyzing digital reconstructions of neuronal morphology skeletons extracted from microscopy stacks. Our framework is capable of detecting and repairing tracing artifacts, allowing the generation of high fidelity surface meshes and high resolution volumetric models for simulation and in silico imaging studies. The applicability of NeuroMorphoVis is demonstrated with two case studies. The first simulates the construction of three-dimensional profiles of neuronal somata and the other highlights how the framework is leveraged to create volumetric models of neuronal circuits for simulating different types of in vitro imaging experiments. Availability and implementation: The source code and documentation are freely available on https://github.com/BlueBrain/NeuroMorphoVis under the GNU public license. The morphological analysis, visualization and surface meshing are implemented as an extensible Python API (Application Programming Interface) based on Blender, and the volume reconstruction and analysis code is written in C++ and parallelized using OpenMP. The framework features are accessible from a user-friendly GUI (Graphical User Interface) and a rich CLI (Command Line Interface). Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Microscopy/methods , Neurons/cytology , Software , Animals , Computer Simulation , Humans
4.
J Neurol Neurosurg Psychiatry ; 83(4): 417-23, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22262910

ABSTRACT

OBJECTIVE: This prospective, bicentre, blinded, intention to treat study assessed the clinical added value of magnetic source imaging (MSI) in the presurgical evaluation of patients with refractory focal epilepsy (RFE). METHODS: 70 consecutive patients with RFE (42 men; mean age 31.5 years, range 3-63) from two Belgian centres were prospectively included. All patients underwent conventional non-invasive presurgical evaluation (CNIPE) and a whole head magnetoencephalography recording (Elekta Neuromag). Equivalent current dipoles corresponding to interictal epileptiform discharges (IED) were fitted in the patients' spherical head model and coregistered on their MRI to produce MSI results. Results of CNIPE were first discussed blinded to the MSI results in respective multidisciplinary epilepsy surgery meetings to determine the presumed localisation of the epileptogenic zone and to set surgical or additional presurgical plans. MSI results were then discussed multidisciplinarily. MSI influence on the initial management plan was assessed. RESULTS: Based on CNIPE, 21 patients had presumed extratemporal epilepsy, 38 had presumed temporal epilepsy and 11 had undetermined localisation epilepsy. MSI showed IED in 52 patients (74.5%) and changed the initial management in 15 patients (21%). MSI related changes were significantly more frequent in patients with presumed extratemporal or undetermined localisation epilepsy compared with patients with presumed temporal epilepsy (p≤0.001). These changes had a clear impact on clinical management in 13% of all patients. CONCLUSION: MSI is a clinically relevant, non-invasive neuroimaging technique for the presurgical evaluation of patients with refractory focal epilepsy and, particularly, in patients with presumed extratemporal and undetermined localisation epilepsy.


Subject(s)
Epilepsies, Partial/diagnosis , Magnetic Resonance Imaging/methods , Preoperative Care/methods , Adolescent , Adult , Child , Child, Preschool , Epilepsies, Partial/surgery , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/surgery , Female , Humans , Magnetoencephalography/methods , Male , Middle Aged , Neuropsychological Tests , Prospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...