Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Med (Lausanne) ; 5: 338, 2018.
Article in English | MEDLINE | ID: mdl-30560131

ABSTRACT

Acute intra-renal infusion of bradykinin increases diuresis and natriuresis via inhibition of vasopressin activity. However, the consequences of chronically increased bradykinin in the kidneys have not yet been studied. A new transgenic animal model producing an excess of bradykinin by proximal tubular cells (KapBK rats) was generated and submitted to different salt containing diets to analyze changes in blood pressure and other cardiovascular parameters, urine excretion, and composition, as well as levels and expression of renin-angiotensin system components. Despite that KapBK rats excrete more urine and sodium, they have similar blood pressure as controls with the exception of a small increase in systolic blood pressure (SBP). However, they present decreased renal artery blood flow, increased intrarenal expression of angiotensinogen, and decreased mRNA expression of vasopressin V1A receptor (AVPR1A), suggesting a mechanism for the previously described reduction of renal vasopressin sensitivity by bradykinin. Additionally, reduced heart rate variability (HRV), increased cardiac output and frequency, and the development of cardiac hypertrophy are the main chronic effects observed in the cardiovascular system. In conclusion: (1) the transgenic KapBK rat is a useful model for studying chronic effects of bradykinin in kidney; (2) increased renal bradykinin causes changes in renin angiotensin system regulation; (3) decreased renal vasopressin sensitivity in KapBK rats is related to decreased V1A receptor expression; (4) although increased renal levels of bradykinin causes no changes in mean arterial pressure (MAP), it causes reduction in HRV, augmentation in cardiac frequency and output and consequently cardiac hypertrophy in rats after 6 months of age.

2.
Cardiovasc Res ; 112(3): 637-644, 2016 12.
Article in English | MEDLINE | ID: mdl-27496871

ABSTRACT

AIMS: B-type natriuretic peptide (BNP)-natriuretic peptide receptor A (NPR-A) receptor signalling inhibits cardiac sympathetic neurotransmission, although C-type natriuretic peptide (CNP) is the predominant neuropeptide of the nervous system with expression in the heart and vasculature. We hypothesized that CNP acts similarly to BNP, and that transgenic rats (TGRs) with neuron-specific overexpression of a dominant negative NPR-B receptor would develop heightened sympathetic drive. METHODS AND RESULTS: Mean arterial pressure and heart rate (HR) were significantly (P < 0.05) elevated in freely moving TGRs (n = 9) compared with Sprague Dawley (SD) controls (n = 10). TGR had impaired left ventricular systolic function and spectral analysis of HR variability suggested a shift towards sympathoexcitation. Immunohistochemistry demonstrated co-staining of NPR-B with tyrosine hydroxylase in stellate ganglia neurons. In SD rats, CNP (250 nM, n = 8) significantly reduced the tachycardia during right stellate ganglion stimulation (1-7 Hz) in vitro whereas the response to bath-applied norepinephrine (NE, 1 µM, n = 6) remained intact. CNP (250 nM, n = 8) significantly reduced the release of 3H-NE in isolated atria and this was prevented by the NPR-B antagonist P19 (250 nM, n = 6). The neuronal Ca2+ current (n = 6) and intracellular Ca2+ transient (n = 9, using fura-2AM) were also reduced by CNP in isolated stellate neurons. Treatment of the TGR (n = 9) with the sympatholytic clonidine (125 µg/kg per day) significantly reduced mean arterial pressure and HR to levels observed in the SD (n = 9). CONCLUSION: C-type natriuretic peptide reduces cardiac sympathetic neurotransmission via a reduction in neuronal calcium signalling and NE release through the NPR-B receptor. Situations impairing CNP-NPR-B signalling lead to hypertension, tachycardia, and impaired left ventricular systolic function secondary to sympatho-excitation.


Subject(s)
Heart/innervation , Natriuretic Peptide, C-Type/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Sympathetic Nervous System/metabolism , Synaptic Transmission , Animals , Arterial Pressure , Calcium Signaling , Genetic Predisposition to Disease , Heart Rate , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Norepinephrine/metabolism , Phenotype , Rats, Sprague-Dawley , Rats, Transgenic , Receptors, Atrial Natriuretic Factor/genetics , Stellate Ganglion/metabolism , Sympathetic Nervous System/physiopathology , Systole , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/physiopathology , Time Factors , Tyrosine 3-Monooxygenase/metabolism , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left
3.
PLoS One ; 5(3): e9794, 2010 Mar 29.
Article in English | MEDLINE | ID: mdl-20369002

ABSTRACT

BACKGROUND: Previous attempts to isolate pluripotent cell lines from rat preimplantation embryo in mouse embryonic stem (ES) cell culture conditions (serum and LIF) were unsuccessful, however the resulting cells exhibited the expression of such traditional pluripotency markers as SSEA-1 and alkaline phosphatase. We addressed the question, which kind of cell lineages are produced from rat preimplantation embryo under "classical" mouse ES conditions. RESULTS: We characterized two cell lines (C5 and B10) which were obtained from rat blastocysts in medium with serum and LIF. In the B10 cell line we found the expression of genes known to be expressed in trophoblast, Cdx-2, cytokeratin-7, and Hand-1. Also, B10 cells invaded the trophectodermal layer upon injection into rat blastocysts. In contrast to mouse Trophoblast Stem (TS) cells proliferation of B10 cells occurred independently of FGF4. Cells of the C5 line expressed traditional markers of extraembryonic-endoderm (XEN) cells, in particular, GATA-4, but also the pluripotency markers SSEA-1 and Oct-4. C5 cell proliferation exhibited dependence on LIF, which is not known to be required by mouse XEN cells. CONCLUSIONS: Our results confirm and extend previous findings about differences between blastocyst-derived cell lines of rat and mice. Our data show, that the B10 cell line represents a population of FGF4-independent rat TS-like cells. C5 cells show features that have recently become known as characteristic of rat XEN cells. Early passages of C5 and B10 cells contained both, TS and XEN cells. We speculate, that mechanisms maintaining self-renewal of cell lineages in rat preimplantation embryo and their in vitro counterparts, including ES, TS and XEN cells are different than in respective mouse lineages.


Subject(s)
Blastocyst/physiology , Embryonic Stem Cells/cytology , Endoderm/metabolism , Alkaline Phosphatase/biosynthesis , Animals , Blastocyst/cytology , Cell Lineage , Cell Proliferation , Developmental Biology/methods , Female , Lewis X Antigen/biosynthesis , Mice , Rats , Rats, Sprague-Dawley , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...