Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 11456, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27118032

ABSTRACT

A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.

2.
J Phys Condens Matter ; 25(25): 256004, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23732951

ABSTRACT

The structural, spectroscopic and magnetic properties of the two-dimensional (2D) molecule-based magnets of [Mn(II)(TCNE)(NCMe)2]X (X = PF6, AsF6, SbF6; TCNE = tetracyanoethylene, NCMe = acetonitrile) composition are reported. It is shown that the alteration of the interlayer distance by increasing the anion size has little effect on the critical magnetic ordering temperature, Tc, suggesting that it depends predominantly on the intra-plane magnetic exchange. The observed field-induced irreversibility in static magnetization, a slow decay of isothermal remanence below Tc, and the dynamic susceptibility data are in accord with a re-entrant spin-glass nature of the ground state of all materials. In contrast to the isostructural Fe-based magnets, in which strong magnetocrystalline anisotropy facilitates the finite temperature magnetic ordering with the magnetization easy axis perpendicular to the µ4-TCNE(•-) plane, in the studied Mn-based magnets the easy axis is canted away from the normal direction, due to a small magnetocrystalline anisotropy. The two magnetic transitions observed on cooling are assigned to the ferrimagnetic long-range ordering of the normal magnetization component followed by the re-entrant spin-glass type transition resulting from a random freezing of the in-plane magnetization component.

SELECTION OF CITATIONS
SEARCH DETAIL
...