Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38621292

ABSTRACT

Silicon is drawing attention as an emerging anode material for the next generation of lithium-ion batteries due to its higher capacity compared with commercial graphite. However, silicon anions formed during lithiation are highly reactive with binder and electrolyte components, creating an unstable SEI layer and limiting the calendar life of silicon anodes. The reactivity of lithium silicide and the formation of an unstable SEI layer are mitigated by utilizing a mixture of Ca and Mg multivalent cations as an electrolyte additive for Si anodes to improve their calendar life. The effect of mixed salts on the bulk and surface of the silicon anodes was studied by multiple structural characterization techniques. Ca and Mg ions in the electrolyte formed relatively thermodynamically stable quaternary Li-Ca-Mg-Si Zintl phases in an in situ fashion and a more stable and denser SEI layer on the Si particles. These in turn protect silicon particles against side reactions with electrolytes in a coin cell. The full cell with the mixed cation electrolyte demonstrates enhanced calendar life performance with lower measured current and current leakage in comparison to that of the baseline electrolyte due to reduced side reactions. Electron microscopy, HR-XRD, and solid-state NMR results showed that electrodes with mixed cations tended to have less cracking on the electrode surface, and the presence of mixed cations enhances cation migration and formation of quaternary Zintl phases stabilizing the bulk and forming a more stable SEI in comparison to baseline electrolyte and electrolyte with single multivalent cations.

2.
Inorg Chem ; 63(6): 3091-3098, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38295272

ABSTRACT

Rechargeable magnesium-ion batteries (MIBs) hold significant promise as an alternative to conventional lithium-ion technology driven by their natural abundance and low-cost, high-energy density, and safety features. Spinel oxides, including MgCrVO4, have emerged as a prospective cathode material for MIBs due to their promising combination of capacity, operating potential, and cation mobility. However, the structural evolution, phase stability, and processes of Mg mobility in MgCrVO4 during electrochemical cycling are poorly understood. In this study, we synthesized a single-phase, solid solution of spinel oxide MgCrVO4 and employed operando X-ray diffraction to couple physical properties with structural changes during cycling. Our results revealed a two-phase reaction mechanism coupled with a solid-solution-like reaction, highlighting the complicated transformation between two distinct phases in the MgCrVO4 lattice during Mg (de)intercalation. Rietveld refinement of the operando data provided valuable insights into the mechanism of the Cr/V-based spinel oxide, shedding light on the transition between the two phases and their roles in Mg-ion (de)intercalation. This study contributes to a deeper understanding of the structural dynamics in multivalent cathode materials and sets the stage for the development of advanced Mg-ion cathodes with enhanced performance and stability.

3.
Acc Chem Res ; 57(1): 1-9, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38113116

ABSTRACT

ConspectusReversible Mg2+ intercalation in metal oxide frameworks is a key enabler for an operational Mg-ion battery with high energy density needed for the next generation of energy storage technologies. While functional Mg-ion batteries have been achieved in structures with soft anions (e.g., S2- and Se2-), they do not meet energy density requirements to compete with the current rechargeable lithium-ion batteries due to their low insertion potentials. It emphasizes the necessity of finding an oxide-based cathode that operates at high potentials. A leading hypothesis to explain the limited availability of oxide Mg-ion cathodes is the belief that Mg2+ has sluggish diffusion kinetics in oxides due to strong electrostatic interactions between the Mg2+ ions and oxide anions in the lattice. From this assessment, it can be hypothesized that such rate limiting kinetic shortcomings can be mitigated by tailoring an oxide framework through creating less stable Mg2+-O2- coordination.Based on theoretical calculations and preliminary experimental data, oxide spinels have been identified as promising cathode candidates with storage capacity, insertion potential, and cation mobility that meet the requirements for a secondary Mg-ion battery. However, spinels with a single redox metal, such as MgCr2O4 or MgMn2O4, were not found to demonstrate sufficiently reversible Mg-ion intercalation at high redox potentials when coupled with nonaqueous Mg-electrolytes. Therefore, a materials development effort was initiated to design, synthesize, and evaluate a new class of solid-solution oxide spinels that can satisfy the required properties needed to create a sustainable Mg-ion cathode. These were designed by bringing together electrochemically active metals with stable redox potentials and charged states against the electrolyte, for instance, Mn3+, in combination with a structural stabilization component, typically Cr3+. Furthermore, common spinel structural defects that degrade performance, i.e., antisite inversion, were controlled to see correlation between structures and electrochemical overpotentials, thus controlling overall hysteresis. The designed materials were characterized by both short- and long-range structure in both ex situ and in situ modes to confirm the nature of solid-solution and to correlate structural changes and redox activity to electrochemical performance. Consistent and reproducible results were observed for facile bulk Mg2+-ion activity without phase transformations, leading to enhanced energy storage capability based on reversible intercalation of Mg2+, enabled by understanding the variables that control the electrochemical performance of the spinel oxide. Based on these observations, with proper materials design, it is possible to develop an oxide cathode material that has many of the desired properties of a Li-ion intercalation cathode, representing a significant mile marker in the quest for high energy density Mg-ion batteries.This Account describes strategies for the design and development of new spinel oxide intercalation materials for high-energy Mg-ion battery cathodes through a combination of theoretical and experimental approaches. We will review the key factors that govern the kinetics of Mg2+ diffusion in spinel oxides and illustrate how material complexity correlates with the electrochemical Mg2+ activity in oxides and is supported by secondary characterization. The understanding gained from the fundamental studies of cation diffusion in oxide cathodes will be beneficial for chemists and materials scientists who are developing rechargeable batteries.

4.
Inorg Chem ; 62(48): 19395-19403, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37983308

ABSTRACT

Polycrystalline IrGe4 was synthesized by annealing elements at 800 °C for 240 h, and the composition was confirmed by energy-dispersive X-ray spectroscopy. IrGe4 adopts a chiral crystal structure (space group P3121) instead of a polar crystal structure (P31), which was corroborated by the convergent-beam electron diffraction and Rietveld refinements using synchrotron powder X-ray diffraction data. The crystal structure features layers of IrGe8 polyhedra along the b axis, and the layers are connected by edge- and corner-sharing. Each layer consists of corner-shared [Ir3Ge20] trimers, which are formed by three IrGe8 polyhedra connected by edge-sharing. Temperature-dependent resistivity indicates metallic behavior. The magnetoresistance increases with increasing applied magnetic field, and the nonsaturating magnetoresistance reaches 11.5% at 9 T and 10 K. The Hall resistivity suggests that holes are the majority carrier type, with a carrier concentration of 4.02 × 1021 cm-3 at 300 K. Electronic band structures calculated by density functional theory reveal a Weyl point with a chiral charge of +3 above the Fermi level.

5.
Nat Commun ; 14(1): 7665, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996427

ABSTRACT

Reversible lattice oxygen redox reactions offer the potential to enhance energy density and lower battery cathode costs. However, their widespread adoption faces obstacles like substantial voltage hysteresis and poor stability. The current research addresses these challenges by achieving a non-hysteresis, long-term stable oxygen redox reaction in the P3-type Na2/3Cu1/3Mn2/3O2. Here we show this is accomplished by forming spin singlet states during charge and discharge. Detailed analysis, including in-situ X-ray diffraction, shows highly reversible structural changes during cycling. In addition, local CuO6 Jahn-Teller distortions persist throughout, with dynamic Cu-O bond length variations. In-situ hard X-ray absorption and ex-situ soft X-ray absorption study, along with density function theory calculations, reveal two distinct charge compensation mechanisms at approximately 3.66 V and 3.99 V plateaus. Notably, we observe a Zhang-Rice-like singlet state during 3.99 V charging, offering an alternative charge compensation mechanism to stabilize the active oxygen redox reaction.

6.
Nature ; 620(7976): 988-993, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532936

ABSTRACT

Understanding how microscopic spin configuration gives rise to exotic properties at the macroscopic length scale has long been pursued in magnetic materials1-5. One seminal example is the Einstein-de Haas effect in ferromagnets1,6,7, in which angular momentum of spins can be converted into mechanical rotation of an entire object. However, for antiferromagnets without net magnetic moment, how spin ordering couples to macroscopic movement remains elusive. Here we observed a seesaw-like rotation of reciprocal lattice peaks of an antiferromagnetic nanolayer film, whose gigahertz structural resonance exhibits more than an order-of-magnitude amplification after cooling below the Néel temperature. Using a suite of ultrafast diffraction and microscopy techniques, we directly visualize this spin-driven rotation in reciprocal space at the nanoscale. This motion corresponds to interlayer shear in real space, in which individual micro-patches of the film behave as coherent oscillators that are phase-locked and shear along the same in-plane axis. Using time-resolved optical polarimetry, we further show that the enhanced mechanical response strongly correlates with ultrafast demagnetization, which releases elastic energy stored in local strain gradients to drive the oscillators. Our work not only offers the first microscopic view of spin-mediated mechanical motion of an antiferromagnet but it also identifies a new route towards realizing high-frequency resonators8,9 up to the millimetre band, so the capability of controlling magnetic states on the ultrafast timescale10-13 can be readily transferred to engineering the mechanical properties of nanodevices.

7.
J Am Chem Soc ; 145(31): 17096-17102, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37490643

ABSTRACT

A cubic metal exhibiting zero thermal expansion (ZTE) over a wide temperature window demonstrates significant applications in a broad range of advanced technologies but is extremely rare in nature. Here, enabled by high-temperature synthesis, we realize tunable thermal expansion via magnetic doping in the class of kagome cubic (Fd-3m) intermetallic (Zr,Nb)Fe2. A remarkably isotropic ZTE is achieved with a negligible coefficient of thermal expansion (+0.47 × 10-6 K-1) from 4 to 425 K, almost wider than most ZTE in metals available. A combined in situ magnetization, neutron powder diffraction, and hyperfine Mössbauer spectrum analysis reveals that interplanar ferromagnetic ordering contributes to a large magnetic compensation for normal lattice contraction upon cooling. Trace Fe-doping introduces extra magnetic exchange interactions that distinctly enhance the ferromagnetism and magnetic ordering temperature, thus engendering such an ultrawide ZTE. This work presents a promising ZTE in kagome metallic materials.

8.
Adv Mater ; 35(10): e2209811, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36594103

ABSTRACT

This study presents a new material, "Hx CrS2 " (denotes approximate composition) formed by proton-exchange of NaCrS2 which has a measured capacity of 728 mAh g-1 with significant improvements to capacity retention, sustaining over 700 mAh g-1 during cycling experiments. This is the highest reported capacity for a transition metal sulfide electrode and outperforms the most promising proposed sodium anodes to date. Hx CrS2 exhibits a biphasic structure featuring alternating crystalline and amorphous lamella on the scale of a few nanometers. This unique structural motif enables reversible access to Cr redox in the material resulting in higher capacities than seen in the parent structure which features only S redox. Pretreatment by proton-exchange offers a route to materials such as Hx CrS2 which provide fast diffusion and high capacities for sodium-ion batteries.

9.
J Am Chem Soc ; 144(31): 14121-14131, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35895903

ABSTRACT

Ion transport in solid-state cathode materials prescribes a fundamental limit to the rates batteries can operate; therefore, an accurate understanding of ion transport is a critical missing piece to enable new battery technologies, such as magnesium batteries. Based on our conventional understanding of lithium-ion materials, MgCr2O4 is a promising magnesium-ion cathode material given its high capacity, high voltage against an Mg anode, and acceptable computed diffusion barriers. Electrochemical examinations of MgCr2O4, however, reveal significant energetic limitations. Motivated by these disparate observations; herein, we examine long-range ion transport by electrically polarizing dense pellets of MgCr2O4. Our conventional understanding of ion transport in battery cathode materials, e.g., Nernst-Einstein conduction, cannot explain the measured response since it neglects frictional interactions between mobile species and their nonideal free energies. We propose an extended theory that incorporates these interactions and reduces to the Nernst-Einstein conduction under dilute conditions. This theory describes the measured response, and we report the first study of long-range ion transport behavior in MgCr2O4. We conclusively show that the Mg chemical diffusivity is comparable to lithium-ion electrode materials, whereas the total conductivity is rate-limiting. Given these differences, energy storage in MgCr2O4 is limited by particle-scale voltage drops, unlike lithium-ion particles that are limited by concentration gradients. Future materials design efforts should consider the interspecies interactions described in this extended theory, particularly with respect to multivalent-ion systems and their resultant effects on continuum transport properties.

10.
ACS Omega ; 7(23): 19048-19057, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35721977

ABSTRACT

The recent discovery of the A n+1B n X3n+1 (A = lanthanide, B = transition metal, X = tetrel) homologous series provides a new platform to study the structure-property relationships of highly correlated electron systems. Several members of Ce n+1Co n Ge3n+1 (n = 1, 4, 5, 6, and ∞) show evidence of heavy electron behavior with complex magnetic interactions. While the Ce analogues have been investigated, only n = 1, 2, and ∞ of Pr n+1Co n Ge3n+1 have been synthesized, with n = 1 and 2 showing a nonsinglet magnetic ground state. The Pr analogues can provide a platform for direct comparison of highly correlated behavior. In this perspective, we discuss the impetus for synthesizing the Pr n+1Co n Ge3n+1 members and present the structural characterization of the n = 3 and n = 4 members. We lay the foundation for future investigations of the Pr n+1Co n Ge3n+1 family of compounds and highlight the importance of complementary methods to characterize new quantum materials.

11.
Nano Lett ; 22(6): 2228-2235, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35235332

ABSTRACT

Calcium-ion batteries (CIBs) are a promising alternative to lithium-ion batteries (LIBs) due to the low redox potential of calcium metal and high abundance of calcium compounds. Due to its layered structure, α-MoO3 is regarded as a promising cathode host lattice. While studies have reported that α-MoO3 can reversibly intercalate Ca ions, limited electrochemical activity has been noted, and its reaction mechanism remains unclear. Here, we re-examine Ca insertion into α-MoO3 nanoparticles with a goal to improve reaction kinetics and clarify the storage mechanism. The α-MoO3 electrodes demonstrated a specific capacity of 165 mA h g-1 centered near 2.7 V vs Ca2+/Ca, stable long-term cycling, and good rate performance at room temperature. This work demonstrates that, under the correct conditions, layered oxides can be a promising host material for CIBs and renews prospects for CIBs.


Subject(s)
Calcium , Nanoparticles , Electrodes , Ions , Lithium/chemistry
12.
Inorg Chem ; 61(10): 4257-4269, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35225605

ABSTRACT

A series of solid solutions, CuFe2-xCoxGe2 (x = 0, 0.2, 0.4, 0.8, and 1.0), have been synthesized by arc-melting and characterized by powder X-ray and neutron diffraction, magnetic measurements, Mössbauer spectroscopy, and electronic band structure calculations. All compounds crystallize in the CuFe2Ge2 structure type, which can be considered as a three-dimensional framework built of fused MGe6 octahedra and MGe5 trigonal bipyramids (M = Fe and Co), with channels filled by rows of Cu atoms. As the Co content (x) increases, the unit cell volume decreases in an anisotropic fashion: the b and c lattice parameters decrease while the a parameter increases. The changes in all the parameters are nearly linear, thus following Vegard's law. CuFe2Ge2 exhibits two successive antiferromagnetic (AFM) orderings, corresponding to the formation of a commensurate AFM structure, followed by an incommensurate AFM structure observed at lower temperatures. As the Co content increases, the AFM ordering temperature (TN) gradually decreases, and only one AFM transition is observed for x ≥ 0.2. The magnetic behavior of unsubstituted CuFe2Ge2 was found to be sensitive to the preparation method. The temperature-dependent zero-field 57Fe Mössbauer spectra reveal two hyperfine split components that evolve in agreement with the two consecutive AFM orderings observed in magnetic measurements. In contrast, the field-dependent spectra obtained for fields ≥2 T reveal a parallel arrangement of the moments associated with the two crystallographically unique metal sites. Electronic band structure calculations and chemical bonding analysis reveal a mix of strong M-M antibonding and non-bonding states at the Fermi level, in support of the overall AFM ordering observed in zero field. The substitution of Co for Fe reduces the population of the M-M antibonding states and the overall density of states at the Fermi level, thus suppressing the TN value.

13.
ACS Org Inorg Au ; 2(1): 8-22, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-36855408

ABSTRACT

CaFe2O4-type sodium postspinels (Na-CFs), with Na+ occupying tunnel sites, are of interest as prospective battery electrodes. While many compounds of this structure type require high-pressure synthesis, several compounds are known to form at ambient pressure. Here we report a large expansion of the known Na-CF phase space at ambient pressure, having successfully synthesized NaCrTiO4, NaRhTiO4, NaCrSnO4, NaInSnO4, NaMg0.5Ti1.5O4, NaFe0.5Ti1.5O4, NaMg0.5Sn1.5O4, NaMn0.5Sn1.5O4, NaFe0.5Sn1.5O4, NaCo0.5Sn1.5O4, NaNi0.5Sn1.5O4, NaCu0.5Sn1.5O4, NaZn0.5Sn1.5O4, NaCd0.5Sn1.5O4, NaSc1.5Sb0.5O4, Na1.16In1.18Sb0.66O4, and several solid solutions. In contrast to earlier reports, even cations that are strongly Jahn-Teller active (e.g., Mn3+ and Cu2+) can form Na-CFs at ambient pressure when combined with Sn4+ rather than with the smaller Ti4+. Order and disorder are probed at the average and local length-scales with synchrotron powder X-ray diffraction and solid-state NMR spectroscopy. Strong ordering of framework cations between the two framework sites is not observed, except in the case of Na1.16In1.18Sb0.66O4. This compound is the first example of an Na-CF that contains Na+ in both the tunnel and framework sites, reminiscent of Li-rich spinels. Trends in the thermodynamic stability of the new compounds are explained on the basis of crystal-chemistry and density functional theory (DFT). Further DFT calculations examine the relative stability of the CF versus spinel structures at various degrees of sodium extraction in the context of electrochemical battery reactions.

14.
Chem Mater ; 32(19)2022.
Article in English | MEDLINE | ID: mdl-38504772

ABSTRACT

Li2OHCl is an exemplar of the antiperovskite family of ionic conductors, for which high ionic conductivities have been reported, but in which the atomic-level mechanism of ion migration is unclear. The stable phase is both crystallographically defective and disordered, having ∼1/3 of the Li sites vacant, while the presence of the OH- anion introduces the possibility of rotational disorder that may be coupled to cation migration. Here, complementary experimental and computational methods are applied to understand the relationship between the crystal chemistry and ionic conductivity in Li2OHCl, which undergoes an orthorhombic to cubic phase transition near 311 K (≈38 °C) and coincides with the more than a factor of 10 change in ionic conductivity (from 1.2 × 10-5mS/cm at 37 °C to 1.4 × 10-3 mS/cm at 39 °C). X-ray and neutron experiments conducted over the temperature range 20-200 °C, including diffraction, quasi-elastic neutron scattering (QENS), the maximum entropy method (MEM) analysis, and ab initio molecular dynamics (AIMD) simulations, together show conclusively that the high lithium ion conductivity of cubic Li2OHCl is correlated to "paddlewheel" rotation of the dynamic OH- anion. The present results suggest that in antiperovskites and derivative structures a high cation vacancy concentration combined with the presence of disordered molecular anions can lead to high cation mobility.

15.
Inorg Chem ; 60(22): 17201-17211, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34735136

ABSTRACT

A polycrystalline iridate Li8IrO6 material was prepared via heating Li2O and IrO2 starting materials in a sealed quartz tube at 650 °C for 48 h. The structure was determined from Rietveld refinement of room-temperature powder neutron diffraction data. Li8IrO6 adopts the nonpolar space group R3̅ with Li atoms occupying the tetrahedral and octahedral sites, which is supported by the electron diffraction and solid-state 7Li NMR. This results in a crystal structure consisting of LiO4 tetrahedral layers alternating with mixed IrO6 and LiO6 octahedral layers along the crystallographic c-axis. The +4 oxidation state of Ir4+ was confirmed by near-edge X-ray absorption spectroscopy. An in situ synchrotron X-ray diffraction study of Li8IrO6 indicates that the sample is stable up to 1000 °C and exhibits no structural transitions. Magnetic measurements suggest long-range antiferromagnetic ordering with a Néel temperature (TN) of 4 K, which is corroborated by heat capacity measurements. The localized effective moment µeff (Ir) = 1.73 µB and insulating character indicate that Li8IrO6 is a correlated insulator. First-principles calculations support the nonpolar crystal structure and reveal the insulating behavior both in paramagnetic and antiferromagnetic states.

16.
Dalton Trans ; 50(32): 11228-11242, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34338700

ABSTRACT

To identify the genesis of the differing magnetic behaviors for the ferro- (FO) and metamagnetic (MM) polymorphs of [FeCp*2][TCNQ] (Cp* = pentamethylcyclopentadienide; TCNQ = 7,7,8,8-tetracyano-p-quinodimethane) the low temperature (18 ± 1 K) structures of each polymorph were determined from high-resolution synchrotron powder diffraction data. Each polymorph possesses chains of alternating S = 1/2 [FeCp*2]˙+ cations and S = 1/2 [TCNQ]˙+, but with differing relative orientations. These as well as an additional paramagnetic polymorph do not thermally interconvert. In addition, the room and low (<70 ± 10 K) temperature structures of the MM polymorph, MMRT and MMLT, respectively, differ from that previously reported at 167 K (-106 °C) MM structure, and no evidence of either phase transition was previously noted even from the magnetic data. This transition temperature and enthalpy of this phase transition for MMRT⇌MM was determined to be 226.5 ± 0.4 K (-46.7 ± 0.4 °C) and 0.68 ± 0.04 kJ mol-1 upon warming, respectively, from differential calorimetry studies (DSC). All three MM phases are triclinic (P1[combining macron]) with the room temperature phase having a doubled unit cell relative to the other two. The lower temperature phase transition involves a small rearrangement of the molecular ions and shift in lattice parameters. These three MM and FO polymorphs have been characterized and form extended 1-D chains with alternating S = 1/2 [FeCp*2]˙+ cations, and S = 1/2 [TCNQ]˙- anions, whereas the fifth, paramagnetic (P) polymorph possesses S = 0 π-[TCNQ]22- dimers. At 18 ± 1 K the intrachain FeFe separations are 10.738(2) and 10.439(3) Å for the FO and MMLT polymorphs, respectively. The key structural differences between FO and MMLT at 18 ± 1 K are the 10% shorter interchain NN and the 2.8% shorter intrachain FeFe separation present for MMLT. Computational analysis of all nearest-neighbor spin couplings for the 18 K structures of FO and MMLT indicates that the intrachain [FeCp*2]˙+[TCNQ]˙- spin couplings (H = -2Si·Sj) are the strongest (4.95 and 6.5 cm-1 for FO and MMLT, respectively), as previously hypothesized, and are ferromagnetic due to their S = 1/2 spins residing in orthogonal orbitals. The change in relative [TCNQ]˙-[TCNQ]˙- orientations leads to a computed change from the ferromagnetic interaction (0.2 cm-1) for FO to an antiferromagnetic interaction (-0.1 cm-1) for MMLT in accord with its observed antiferromagnetic ground state. Hence, the magnetic ground state cannot be solely described by the dominant magnetic interactions.

17.
Nat Commun ; 12(1): 4235, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34244509

ABSTRACT

Graphite, a robust host for reversible lithium storage, enabled the first commercially viable lithium-ion batteries. However, the thermal degradation pathway and the safety hazards of lithiated graphite remain elusive. Here, solid-electrolyte interphase (SEI) decomposition, lithium leaching, and gas release of the lithiated graphite anode during heating were examined by in situ synchrotron X-ray techniques and in situ mass spectroscopy. The source of flammable gas such as H2 was identified and quantitively analyzed. Also, the existence of highly reactive residual lithium on the graphite surface was identified at high temperatures. Our results emphasized the critical role of the SEI in anode thermal stability and uncovered the potential safety hazards of the flammable gases and leached lithium. The anode thermal degradation mechanism revealed in the present work will stimulate more efforts in the rational design of anodes to enable safe energy storage.

18.
J Am Chem Soc ; 143(28): 10649-10658, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34236849

ABSTRACT

A promising high-voltage spinel oxide cathode material MgCrMnO4 with 18% Mg/Mn inversion was synthesized successfully. A new custom operando battery device was designed to study the cation migration mechanisms of the MgCrMnO4 cathode using 0.1 M Mg(TPFA)2 electrolyte dissolved in triglyme and activated carbon as the anode. For the first time in multivalent batteries, high-quality operando diffraction data enabled the accurate quantification of cation contents in the host structure. Besides the exceptional reversibility of 12% Mg2+ insertion in Mg1-xCrMnO4 (x ≤ 1), a partially reversible insertion of excess Mg2+ during overdischarging was also observed. Moreover, the insertion/extraction reaction was experimentally shown to be accompanied by a series of cation redistributions in the spinel framework, which were further supported by density functional theory calculations. The inverted Mn is believed to be directly involved in the cation migrations, which would cause voltage hysteresis and irreversible structural evolution after overdischarging. Tuning the Mg/Mn inversion rate could provide a direct path to further optimize spinel oxide cathodes for Mg-ion batteries, and more generally, the operando techniques developed in this work should play a key role in understanding the complex mechanisms involved in multivalent ion insertion systems.

19.
Adv Mater ; 33(30): e2101591, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34137086

ABSTRACT

New developments in the field of topological matter are often driven by materials discovery, including novel topological insulators, Dirac semimetals, and Weyl semimetals. In the last few years, large efforts have been made to classify all known inorganic materials with respect to their topology. Unfortunately, a large number of topological materials suffer from non-ideal band structures. For example, topological bands are frequently convoluted with trivial ones, and band structure features of interest can appear far below the Fermi level. This leaves just a handful of materials that are intensively studied. Finding strategies to design new topological materials is a solution. Here, a new mechanism is introduced, which is based on charge density waves and non-symmorphic symmetry, to design an idealized Dirac semimetal. It is then shown experimentally that the antiferromagnetic compound GdSb0.46 Te1.48 is a nearly ideal Dirac semimetal based on the proposed mechanism, meaning that most interfering bands at the Fermi level are suppressed. Its highly unusual transport behavior points to a thus far unknown regime, in which Dirac carriers with Fermi energy very close to the node seem to gradually localize in the presence of lattice and magnetic disorder.

20.
Inorg Chem ; 60(12): 8500-8506, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34076406

ABSTRACT

We present a study on the nuclear and magnetic structures of two iron-based garnets with magnetic cations isolated on tetrahedral sites. Ca2YZr2Fe3O12 and Ca2LaZr2Fe3O12 offer an interesting comparison for examining the effect of increasing cation size within the diamagnetic backbone of the garnet crystal structure, and how such changes affect the magnetic order. Despite both systems exhibiting well-pronounced magnetic transitions at low temperatures, we also find evidence for diffuse magnetic scattering due to a competition between the nearest-neighbor, next nearest-neighbor, and so on, within the tetrahedral sites. This competition results in a complex noncollinear magnetic structure on the tetrahedral sublattice creating a mixture of ferro- and antiferromagnetic interactions above the long-range ordering temperature near 20 K and suggests that the cubic site of the garnet plays a significant role in mediating the superexchange interactions between tetrahedral cations.

SELECTION OF CITATIONS
SEARCH DETAIL
...