Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
J Clin Microbiol ; 62(4): e0130523, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38511938

ABSTRACT

The unprecedented precision and resolution of whole genome sequencing (WGS) can provide definitive identification of infectious agents for epidemiological outbreak tracking. WGS approaches, however, are frequently impeded by low pathogen DNA recovery from available primary specimens or unculturable samples. A cost-effective hybrid capture assay for Legionella pneumophila WGS analysis directly on primary specimens was developed. DNA from a diverse range of sputum and autopsy specimens PCR-positive for L. pneumophila serogroup 1 (LPSG1) was enriched with this method, and WGS was performed. All tested specimens were determined to be enriched for Legionella reads (up to 209,000-fold), significantly improving the discriminatory power to compare relatedness when no clinical isolate was available. We found the WGS data from some enriched specimens to differ by less than five single-nucleotide polymorphisms (SNPs) when compared to the WGS data of a matched culture isolate. This testing and analysis retrospectively provided previously unconfirmed links to environmental sources for clinical specimens of sputum and autopsy lung tissue. The latter provided the additional information needed to identify the source of these culture-negative cases associated with the South Bronx 2015 Legionnaires' disease (LD) investigation in New York City. This new method provides a proof of concept for future direct clinical specimen hybrid capture enrichment combined with WGS and bioinformatic analysis during outbreak investigations.IMPORTANCELegionnaires' disease (LD) is a severe and potentially fatal type of pneumonia primarily caused by inhalation of Legionella-contaminated aerosols from man-made water or cooling systems. LD remains extremely underdiagnosed as it is an uncommon form of pneumonia and relies on clinicians including it in the differential and requesting specialized testing. Additionally, it is challenging to obtain clinical lower respiratory specimens from cases with LD, and when available, culture requires specialized media and growth conditions, which are not available in all microbiology laboratories. In the current study, a method for Legionella pneumophila using hybrid capture by RNA baiting was developed, which allowed us to generate sufficient genome resolution from L. pneumophila serogroup 1 PCR-positive clinical specimens. This new approach offers an additional tool for surveillance of future LD outbreaks where isolation of Legionella is not possible and may help solve previously unanswered questions from past LD investigations.


Subject(s)
Legionella pneumophila , Legionella , Legionnaires' Disease , Pneumonia , Humans , Legionnaires' Disease/diagnosis , Retrospective Studies , Legionella pneumophila/genetics , Whole Genome Sequencing , Disease Outbreaks , DNA
2.
Tuberculosis (Edinb) ; 142: 102380, 2023 09.
Article in English | MEDLINE | ID: mdl-37543009

ABSTRACT

Whole-genome sequencing (WGS) can predict drug resistance and antimicrobial susceptibility in Mycobacterium tuberculosis complex (MTBC) and has shown promise in partially replacing culture-based phenotypic drug susceptibility testing (pDST). We performed a two-year side by side study comparing the prediction of drug resistance and antimicrobial susceptibility by WGS molecular DST (mDST) to pDST to determine resistance at the critical concentration by Mycobacterial Growth Indicator Tube (MGIT) and agar proportion testing. Negative predictive values of WGS results were consistently high for the first-line drugs: rifampin (99.9%), isoniazid (99.0%), pyrazinamide (98.5%), and ethambutol (99.8%); the rates of resistance to these drugs, among strains in our population, are 2.9%, 10.4%, 46.3%, and 2.3%, respectively. WGS results were available an average 8 days earlier than first-line MGIT pDST. Based on these findings, we implemented a new testing algorithm with an updated WGS workflow in which strains predicted pan-susceptible were no longer tested by pDST. This algorithm was applied to 1177 isolates between October 2018 and September 2020, eliminating pDST for 66.6% of samples and reducing pDST for an additional 22.0%. This algorithm change resulted in faster turnaround times and decreased cost while maintaining comprehensive antimicrobial susceptibility profiles of all culture-positive MTBC cases in New York.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/genetics , New York , Microbial Sensitivity Tests , Isoniazid , Algorithms , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
3.
PLoS Pathog ; 19(8): e1011243, 2023 08.
Article in English | MEDLINE | ID: mdl-37651316

ABSTRACT

Lyme disease is the most common vector-borne disease in North America and Europe. The clinical manifestations of Lyme disease vary based on the genospecies of the infecting Borrelia burgdorferi spirochete, but the microbial genetic elements underlying these associations are not known. Here, we report the whole genome sequence (WGS) and analysis of 299 B. burgdorferi (Bb) isolates derived from patients in the Eastern and Midwestern US and Central Europe. We develop a WGS-based classification of Bb isolates, confirm and extend the findings of previous single- and multi-locus typing systems, define the plasmid profiles of human-infectious Bb isolates, annotate the core and strain-variable surface lipoproteome, and identify loci associated with disseminated infection. A core genome consisting of ~900 open reading frames and a core set of plasmids consisting of lp17, lp25, lp36, lp28-3, lp28-4, lp54, and cp26 are found in nearly all isolates. Strain-variable (accessory) plasmids and genes correlate strongly with phylogeny. Using genetic association study methods, we identify an accessory genome signature associated with dissemination in humans and define the individual plasmids and genes that make up this signature. Strains within the RST1/WGS A subgroup, particularly a subset marked by the OspC type A genotype, have increased rates of dissemination in humans. OspC type A strains possess a unique set of strongly linked genetic elements including the presence of lp56 and lp28-1 plasmids and a cluster of genes that may contribute to their enhanced virulence compared to other genotypes. These features of OspC type A strains reflect a broader paradigm across Bb isolates, in which near-clonal genotypes are defined by strain-specific clusters of linked genetic elements, particularly those encoding surface-exposed lipoproteins. These clusters of genes are maintained by strain-specific patterns of plasmid occupancy and are associated with the probability of invasive infection.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Humans , Borrelia burgdorferi/genetics , Genotype , Whole Genome Sequencing , Plasmids/genetics
4.
Front Public Health ; 11: 1206056, 2023.
Article in English | MEDLINE | ID: mdl-37457262

ABSTRACT

Mycobacterium tuberculosis complex (MTBC) infections are treated with combinations of antibiotics; however, these regimens are not as efficacious against multidrug and extensively drug resistant MTBC. Phenotypic (growth-based) drug susceptibility testing on slow growing bacteria like MTBC requires many weeks to months to complete, whereas sequencing-based approaches can predict drug resistance (DR) with reduced turnaround time. We sought to develop a multiplexed, targeted next generation sequencing (tNGS) assay that can predict DR and can be performed directly on clinical respiratory specimens. A multiplex PCR was designed to amplify a group of thirteen full-length genes and promoter regions with mutations known to be involved in resistance to first- and second-line MTBC drugs. Long-read amplicon libraries were sequenced with Oxford Nanopore Technologies platforms and high-confidence resistance mutations were identified in real-time using an in-house developed bioinformatics pipeline. Sensitivity, specificity, reproducibility, and accuracy of the tNGS assay was assessed as part of a clinical validation study. In total, tNGS was performed on 72 primary specimens and 55 MTBC-positive cultures and results were compared to clinical whole genome sequencing (WGS) performed on paired patient cultures. Complete or partial susceptibility profiles were generated from 82% of smear positive primary specimens and the resistance mutations identified by tNGS were 100% concordant with WGS. In addition to performing tNGS on primary clinical samples, this assay can be used to sequence MTBC cultures mixed with other mycobacterial species that would not yield WGS results. The assay can be effectively implemented in a clinical/diagnostic laboratory with a two to three day turnaround time and, even if batched weekly, tNGS results are available on average 15 days earlier than culture-derived WGS results. This study demonstrates that tNGS can reliably predict MTBC drug resistance directly from clinical specimens or cultures and provide critical information in a timely manner for the appropriate treatment of patients with DR tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , High-Throughput Nucleotide Sequencing , Microbial Sensitivity Tests , Reproducibility of Results , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis/diagnosis
5.
mBio ; 14(3): e0253522, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37067422

ABSTRACT

Genome-scale analyses have revealed many transcription factor binding sites within, rather than upstream of, genes, raising questions as to the function of these binding sites. Here, we use complementary approaches to map the regulon of the Escherichia coli transcription factor PhoB, a response regulator that controls transcription of genes involved in phosphate homeostasis. Strikingly, the majority of PhoB binding sites are located within genes, but these intragenic sites are not associated with detectable transcription regulation and are not evolutionarily conserved. Many intragenic PhoB sites are located in regions bound by H-NS, likely due to shared sequence preferences of PhoB and H-NS. However, these PhoB binding sites are not associated with transcription regulation even in the absence of H-NS. We propose that for many transcription factors, including PhoB, binding sites not associated with promoter sequences are transcriptionally inert and hence are tolerated as genomic "noise." IMPORTANCE Recent studies have revealed large numbers of transcription factor binding sites within the genes of bacteria. The function, if any, of the vast majority of these binding sites has not been investigated. Here, we map the binding of the transcription factor PhoB across the Escherichia coli genome, revealing that the majority of PhoB binding sites are within genes. We show that PhoB binding sites within genes are not associated with regulation of the overlapping genes. Indeed, our data suggest that bacteria tolerate the presence of large numbers of nonregulatory, intragenic binding sites for transcription factors and that these binding sites are not under selective pressure.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Regulon , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Transcription Factors/genetics , Transcription Factors/metabolism , Binding Sites , Phosphates/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
6.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909473

ABSTRACT

Lyme disease is the most common vector-borne disease in North America and Europe. The clinical manifestations of Lyme disease vary based on the genospecies of the infecting Borrelia burgdorferi spirochete, but the microbial genetic elements underlying these associations are not known. Here, we report the whole genome sequence (WGS) and analysis of 299 patient-derived B. burgdorferi sensu stricto ( Bbss ) isolates from patients in the Eastern and Midwestern US and Central Europe. We develop a WGS-based classification of Bbss isolates, confirm and extend the findings of previous single- and multi-locus typing systems, define the plasmid profiles of human-infectious Bbss isolates, annotate the core and strain-variable surface lipoproteome, and identify loci associated with disseminated infection. A core genome consisting of ∻800 open reading frames and a core set of plasmids consisting of lp17, lp25, lp36, lp28-3, lp28-4, lp54, and cp26 are found in nearly all isolates. Strain-variable (accessory) plasmids and genes correlate strongly with phylogeny. Using genetic association study methods, we identify an accessory genome signature associated with dissemination and define the individual plasmids and genes that make up this signature. Strains within the RST1/WGS A subgroup, particularly a subset marked by the OspC type A genotype, are associated with increased rates of dissemination. OspC type A strains possess a unique constellation of strongly linked genetic changes including the presence of lp56 and lp28-1 plasmids and a cluster of genes that may contribute to their enhanced virulence compared to other genotypes. The patterns of OspC type A strains typify a broader paradigm across Bbss isolates, in which genetic structure is defined by correlated groups of strain-variable genes located predominantly on plasmids, particularly for expression of surface-exposed lipoproteins. These clusters of genes are inherited in blocks through strain-specific patterns of plasmid occupancy and are associated with the probability of invasive infection.

7.
bioRxiv ; 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36798257

ABSTRACT

Genome-scale analyses have revealed many transcription factor binding sites within, rather than upstream of genes, raising questions as to the function of these binding sites. Here, we use complementary approaches to map the regulon of the Escherichia coli transcription factor PhoB, a response regulator that controls transcription of genes involved in phosphate homeostasis. Strikingly, the majority of PhoB binding sites are located within genes, but these intragenic sites are not associated with detectable transcription regulation and are not evolutionarily conserved. Many intragenic PhoB sites are located in regions bound by H-NS, likely due to shared sequence preferences of PhoB and H-NS. However, these PhoB binding sites are not associated with transcription regulation even in the absence of H-NS. We propose that for many transcription factors, including PhoB, binding sites not associated with promoter sequences are transcriptionally inert, and hence are tolerated as genomic "noise". IMPORTANCE: Recent studies have revealed large numbers of transcription factor binding sites within the genes of bacteria. The function, if any, of the vast majority of these binding sites has not been investigated. Here, we map the binding of the transcription factor PhoB across the Escherichia coli genome, revealing that the majority of PhoB binding sites are within genes. We show that PhoB binding sites within genes are not associated with regulation of the overlapping genes. Indeed, our data suggest that bacteria tolerate the presence of large numbers of non-regulatory, intragenic binding sites for transcription factors, and that these binding sites are not under selective pressure.

8.
Front Microbiol ; 13: 992610, 2022.
Article in English | MEDLINE | ID: mdl-36299734

ABSTRACT

Nontuberculous mycobacteria (NTM) are environmental bacteria commonly found in soil and water in almost every part of the world. While usually non-pathogenic, they can cause acute respiratory and cutaneous infections under certain circumstances or in patients with underlying medical conditions. Contrary to members of the Mycobacterium tuberculosis complex, documented human-to-human transmissions of NTM have been rarely reported and most cases result from direct environmental exposure. Here we describe the identification of a new NTM species isolated from a hand laceration of a New York State patient after a fall. This new NTM forms rough, orange pigmented colonies and is naturally resistant to doxycycline and tobramycin. Whole genome analysis reveal no close relatives present in public databases, and our findings are in accordance with the recognition of a new taxonomic species of NTM. We propose the name Mycobacterium salfingeri sp. nov. for this new NTM representative. The type strain is 20-157661T (DSM = 113368T, BCCM = ITM 501207T).

9.
Front Immunol ; 13: 1025343, 2022.
Article in English | MEDLINE | ID: mdl-36248826

ABSTRACT

Two types of autoimmune hepatitis (AIH) are recognized; AIH-1 is characterized by the presence of anti-nuclear and/or anti-smooth muscle autoantibodies, while AIH-2 is associated with the presence of anti-Liver kidney microsome and/or anti-Liver Cytosol antibodies. The autoantigens targeted by AIH-2 autoantibodies are the cytochrome P450 2D6 and Formiminotransferase-cyclodeaminase for anti-LKM1 and anti-LC1 respectively. Both autoantigens are expressed in hepatocytes at higher levels than in any other cell type. Therefore, compared to AIH-1, the autoantigens targeted in AIH-2 are predominantly tissue-specific. Distinct clinical features are specific to AIH-2 compared to AIH-1, including diagnosis in younger patients (mean age 6.6 years), onset as fulminant hepatitis in very young patients (3 years of age or less), higher frequency in children than in adults and is frequently associated with extrahepatic T cell-mediated autoimmune diseases. AIH-2 is also often diagnosed in patients with primary immunodeficiency. AIH-2 is associated with specific HLA class II susceptibility alleles; DQB1*0201 is considered the main determinant of susceptibility while DRB1*07/DRB1*03 is associated with the type of autoantibody present. HLA DQB1*0201 is in strong linkage disequilibrium with both HLA DRB1*03 and DRB1*07. Interestingly, as in humans, MHC and non-MHC genes strongly influence the development of the disease in an animal model of AIH-2. Altogether, these findings suggest that AIH-2 incidence is likely dependent on specific genetic susceptibility factors combined with distinct environmental triggers.


Subject(s)
Hepatitis, Autoimmune , Animals , Autoantibodies , Autoantigens , Child , Cytochrome P-450 CYP2D6 , Genetic Predisposition to Disease , HLA-DRB1 Chains/genetics , Hepatitis, Autoimmune/diagnosis , Hepatitis, Autoimmune/genetics , Humans
10.
Diagn Microbiol Infect Dis ; 104(2): 115765, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35932600

ABSTRACT

In 2017, the New York State Department of Health investigated a large Klebsiella pneumoniae outbreak in a health care facility. A retrospective analysis was conducted to compare the use of multiple molecular typing methods for characterizing the outbreak. Forty-four isolates were characterized using the rapid real-time PCR OpGen Acuitas® AMR Gene Panel. Additionally, short-read whole genome sequencing (WGS) analysis was used to identify antimicrobial resistance (AMR) genes and assess isolate relatedness. Long-read Oxford Nanopore MinION WGS was used to characterize the plasmid content of a subset of isolates. All methods showed overall concordance, identifying four clusters, with a few discrepancies in the clustering of individual isolates. Though short- and long-read WGS results provided a more nuanced understanding of the molecular epidemiology of this outbreak, this study highlights the utility of the Acuitas® PCR-based approach, which can more easily be performed by health care facilities, for rapid clustering of patient isolates.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents , Bacterial Proteins/genetics , Disease Outbreaks , Humans , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , New York/epidemiology , Plasmids , Polymerase Chain Reaction , Retrospective Studies , Whole Genome Sequencing/methods , beta-Lactamases/genetics
11.
Front Immunol ; 13: 907591, 2022.
Article in English | MEDLINE | ID: mdl-35844534

ABSTRACT

Immune checkpoint inhibitors (ICI) are being increasingly used to successfully treat several types of cancer. However, due to their mode of action, these treatments are associated with several immune-related adverse events (irAEs), including immune-mediated autoimmune-like hepatitis in 5 to 10% of cases. The specific immune mechanism responsible for the development of immune-mediated liver injury caused by immune checkpoint inhibitors (ILICI) is currently unknown. This review summarizes the current knowledge on hepatic irAEs during cancer immunotherapy. It also addresses the clinical management of ILICI and how it is becoming an increasingly important clinical issue. Clinical, histological, and laboratory features of autoimmune hepatitis (AIH) and ILICI are compared, and their shared and distinctive traits are discussed in an effort to better understand the development of hepatic irAEs. Finally, based on the current knowledge of liver immunology and AIH pathogenesis, we propose a series of events that could trigger the observed liver injury in ICI-treated patients. This model could be useful in the design of future studies aiming to identify the specific immune mechanism(s) at play in ILICI and improve immune checkpoint inhibitor cancer immunotherapy.


Subject(s)
Hepatitis, Autoimmune , Neoplasms , Hepatitis, Autoimmune/drug therapy , Hepatitis, Autoimmune/therapy , Humans , Immune Checkpoint Inhibitors/adverse effects , Immunotherapy/adverse effects , Neoplasms/pathology
12.
Emerg Infect Dis ; 28(7): 1431-1436, 2022 07.
Article in English | MEDLINE | ID: mdl-35731170

ABSTRACT

We report the unusual genotypic characterization of a bacterium isolated from a clinical sample of a patient who grew up in Bangladesh and lives in the United States. Using whole-genome sequencing, we identified the bacterium as a member of the Mycobacterium tuberculosis complex (MTBC). Phylogenetic placement of this strain suggests a new MTBC genotype. Even though it had the same spoligotype as M. caprae strains, single-nucleotide polymorphism-based phylogenetic analysis placed the isolate as a sister lineage distinct from M. caprae, most closely related to 5 previously sequenced genomes isolated from primates and elephants in Asia. We propose a new animal-associated lineage, La4, within MTBC.


Subject(s)
Mycobacterium tuberculosis , Animals , Bangladesh/epidemiology , Genotype , Humans , Mycobacterium tuberculosis/genetics , Phylogeny , Whole Genome Sequencing
13.
Appl Environ Microbiol ; 87(16): e0058021, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34085864

ABSTRACT

Since 1978, the New York State Department of Health's public health laboratory, Wadsworth Center (WC), in collaboration with epidemiology and environmental partners, has been committed to providing comprehensive public health testing for Legionella in New York. Statewide, clinical case counts have been increasing over time, with the highest numbers identified in 2017 and 2018 (1,022 and 1,426, respectively). Over the course of more than 40 years, the WC Legionella testing program has continuously implemented improved testing methods. The methods utilized have transitioned from solely culture-based methods for organism recovery to development of a suite of reference testing services, including identification and characterization by PCR and pulsed-field gel electrophoresis (PFGE). In the last decade, whole-genome sequencing (WGS) has further refined the ability to link outbreak strains between clinical specimens and environmental samples. Here, we review Legionnaires' disease outbreak investigations during this time period, including comprehensive testing of both clinical and environmental samples. Between 1978 and 2017, 60 outbreaks involving clinical and environmental isolates with matching PFGE patterns were detected in 49 facilities from the 157 investigations at 146 facilities. However, 97 investigations were not solved due to the lack of clinical or environmental isolates or PFGE matches. We found 69% of patient specimens from New York State (NYS) were outbreak associated, a much higher rate than observed in other published reports. The consistent application of new cutting-edge technologies and environmental regulations has resulted in successful investigations resulting in remediation efforts. IMPORTANCE Legionella, the causative agent of Legionnaires' disease (LD), can cause severe respiratory illness. In 2018, there were nearly 10,000 cases of LD reported in the United States (https://www.cdc.gov/legionella/fastfacts.html; https://wonder.cdc.gov/nndss/static/2018/annual/2018-table2h.html), with actual incidence believed to be much higher. About 10% of patients with LD will die, and as high as 90% of patients diagnosed will be hospitalized. As Legionella is spread predominantly through engineered building water systems, identifying sources of outbreaks by assessing environmental sources is key to preventing further cases LD.


Subject(s)
Legionella/isolation & purification , Legionnaires' Disease/microbiology , Disease Outbreaks , Fresh Water/microbiology , Humans , Legionella/classification , Legionella/genetics , Legionnaires' Disease/diagnosis , Legionnaires' Disease/epidemiology , New York/epidemiology , Water Supply
14.
BMC Genomics ; 22(1): 396, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34044772

ABSTRACT

BACKGROUND: Transmission of pathogens by vector mosquitoes is intrinsically linked with mosquito's reproductive strategy because anautogenous mosquitoes require vertebrate blood to develop a batch of eggs. Each cycle of egg maturation is tightly linked with the intake of a fresh blood meal for most species. Mosquitoes that acquire pathogens during the first blood feeding can transmit the pathogens to susceptible hosts during subsequent blood feeding and also vertically to the next generation via infected eggs. Large-scale gene-expression changes occur following each blood meal in various tissues, including ovaries. Here we analyzed mosquito ovary transcriptome following a blood meal at three different time points to investigate blood-meal induced changes in gene expression in mosquito ovaries. RESULTS: We collected ovaries from Aedes aegypti that received a sugar meal or a blood meal on days 3, 10 and 20 post blood meal for transcriptome analysis. Over 4000 genes responded differentially following ingestion of a blood meal on day 3, and 660 and 780 genes on days 10 and 20, respectively. Proteins encoded by differentially expressed genes (DEGs) on day 3 include odorant binding proteins (OBPs), defense-specific proteins, and cytochrome P450 detoxification enzymes. In addition, we identified 580 long non-coding RNAs that are differentially expressed at three time points. Gene ontology analysis indicated that genes involved in peptidase activity, oxidoreductase activity, extracellular space, and hydrolase activity, among others were enriched on day 3. Although most of the DEGs returned to the nonsignificant level compared to the sugar-fed mosquito ovaries following oviposition on days 10 and 20, there remained differences in the gene expression pattern in sugar-fed and blood-fed mosquitoes. CONCLUSIONS: Enrichment of OBPs following blood meal ingestion suggests that these genes may have other functions besides being part of the olfactory system. The enrichment of immune-specific genes and cytochrome P450 genes indicates that ovaries become well prepared to protect their germ line from any pathogens that may accompany the blood meal or from environmental contamination during oviposition, and to deal with the detrimental effects of toxic metabolites.


Subject(s)
Aedes , Aedes/genetics , Animals , Female , Gene Expression , Mosquito Vectors/genetics , Ovary , Oviposition
15.
J Clin Microbiol ; 59(2)2021 01 21.
Article in English | MEDLINE | ID: mdl-33239371

ABSTRACT

Legionnaires' disease, a severe lung infection caused by the bacterium Legionella pneumophila, occurs as single cases or in outbreaks that are actively tracked by public health departments. To determine the point source of an outbreak, clinical isolates need to be compared to environmental samples to find matching isolates. One confounding factor is the genome plasticity of L. pneumophila, making an exact sequence comparison by whole-genome sequencing (WGS) challenging. Here, we present a WGS analysis pipeline, LegioCluster, that is designed to circumvent this problem by automatically selecting the best matching reference genome prior to mapping and variant calling. This approach reduces the number of false-positive variant calls, maximizes the fraction of all genomes that are being compared, and naturally clusters the isolates according to their reference strain. Isolates that are too distant from any genome in the database are added to the list of candidate references, thereby creating a new cluster. Short insertions or deletions are considered in addition to single-nucleotide polymorphisms for increased discriminatory power. This manuscript describes the use of this automated and "locked down" bioinformatic pipeline deployed at the New York State Department of Health's Wadsworth Center for investigating relatedness between clinical and environmental isolates. A similar pipeline has not been widely available for use to support these critically important public health investigations.


Subject(s)
Legionella pneumophila , Legionnaires' Disease , Cluster Analysis , Computational Biology , Disease Outbreaks , Humans , Legionella pneumophila/genetics , Legionnaires' Disease/epidemiology , New York
16.
J Clin Microbiol ; 59(4)2021 03 19.
Article in English | MEDLINE | ID: mdl-32999007

ABSTRACT

Rapid and reliable detection of rifampin (RIF) resistance is critical for the diagnosis and treatment of drug-resistant and multidrug-resistant (MDR) tuberculosis. Discordant RIF phenotype/genotype susceptibility results remain a challenge due to the presence of rpoB mutations that do not confer high levels of RIF resistance, as have been exhibited in strains with mutations such as Ser450Leu. These strains, termed low-level RIF resistant, exhibit elevated RIF MICs compared to fully susceptible strains but remain phenotypically susceptible by mycobacterial growth indicator tube (MGIT) testing and have been associated with poor patient outcomes. Here, we assess RIF resistance prediction by whole-genome sequencing (WGS) among a set of 1,779 prospectively tested strains by both prevalence of rpoB gene mutation and phenotype as part of routine clinical testing during a 2.5-year period. During this time, 139 strains were found to have nonsynonymous rpoB mutations, 53 of which were associated with RIF resistance, including both low-level and high-level resistance. Resistance to RIF (1.0 µg/ml in MGIT) was identified in 43 (81.1%) isolates. The remaining 10 (18.9%) strains were susceptible by MGIT but were confirmed to be low-level RIF resistant by MIC testing. Full rpoB gene sequencing overcame the limitations of critical concentration phenotyping, probe-based genotyping, and partial gene sequencing methods. Universal clinical WGS with concurrent phenotypic testing provided a more complete understanding of the prevalence and type of rpoB mutations and their association with RIF resistance in New York.


Subject(s)
Mycobacterium tuberculosis , Pharmaceutical Preparations , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , New York , Rifampin/pharmacology
17.
J Clin Microbiol ; 59(1)2020 12 17.
Article in English | MEDLINE | ID: mdl-33055186

ABSTRACT

Next-generation sequencing technologies are being rapidly adopted as a tool of choice for diagnostic and outbreak investigation in public health laboratories. However, costs of operation and the need for specialized staff remain major hurdles for laboratories with limited resources for implementing these technologies. This project aimed to assess the feasibility of using Oxford Nanopore MinION whole-genome sequencing data of Mycobacterium tuberculosis isolates for species identification, in silico spoligotyping, detection of mutations associated with antimicrobial resistance (AMR) to accurately predict drug susceptibility profiles, and phylogenetic analysis to detect transmission between cases. The results were compared prospectively in real time to those obtained with our current clinically validated Illumina MiSeq sequencing assay for M. tuberculosis and phenotypic drug susceptibility testing results when available. Our assessment of 431 sequenced samples over a 32-week period demonstrates that, when using the proper quality controls and thresholds, the MinION can achieve levels of genotyping analysis and phenotypic resistance predictions comparable to those of the Illumina MiSeq at a very competitive cost per sample. Our results indicate that nanopore sequencing can be a suitable alternative to, or complement, currently used sequencing platforms in a clinical setting and has the potential to be widely adopted in public health laboratories in the near future.


Subject(s)
Mycobacterium tuberculosis , Nanopore Sequencing , High-Throughput Nucleotide Sequencing , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Phylogeny
18.
Front Microbiol ; 11: 2007, 2020.
Article in English | MEDLINE | ID: mdl-32973725

ABSTRACT

Carbapenemase-producing Enterobacteriaceae are a major threat to global public health. Klebsiella pneumoniae carbapenemase (KPC) is the most commonly identified carbapenemase in the United States and is frequently found on mobile genetic elements including plasmids, which can be horizontally transmitted between bacteria of the same or different species. Here we describe the results of an epidemiological investigation of KPC-producing bacteria at two healthcare facilities. Using a combination of short-read and long-read whole-genome sequencing, we identified an identical 44 kilobase plasmid carrying the bla KPC-2 gene in four bacterial isolates belonging to three different species (Citrobacter freundii, Klebsiella pneumoniae, and Escherichia coli). The isolates in this investigation were collected from patients who were epidemiologically linked in a region in which KPC was uncommon, suggesting that the antibiotic resistance plasmid was transmitted between these bacterial species. This investigation highlights the importance of long-read sequencing in investigating the relatedness of bacterial plasmids, and in elucidating potential plasmid-mediated outbreaks caused by antibiotic resistant bacteria.

19.
Emerg Infect Dis ; 26(6): 1315-1319, 2020 06.
Article in English | MEDLINE | ID: mdl-32441636

ABSTRACT

During 2016-2017, three rabid terrestrial animals were discovered in the raccoon rabies virus-free zone of Long Island, New York, USA. Whole-genome sequencing and phylogenetic analyses revealed the likely origins of the viruses, enabling the rabies outbreak response (often costly and time-consuming) to be done less expensively and more efficiently.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , Animals , Animals, Wild , New York/epidemiology , Phylogeny , Rabies/epidemiology , Rabies/veterinary , Rabies virus/genetics , Raccoons , Zoonoses
20.
J Clin Microbiol ; 57(7)2019 07.
Article in English | MEDLINE | ID: mdl-31068414

ABSTRACT

Whole-genome sequencing (WGS) of pathogens from pure culture provides unparalleled accuracy and comprehensive results at a cost that is advantageous compared with traditional diagnostic methods. Sequencing pathogens directly from a primary clinical specimen would help circumvent the need for culture and, in the process, substantially shorten the time to diagnosis and public health reporting. Unfortunately, this approach poses significant challenges because of the mixture of multiple sequences from a complex fecal biomass. The aim of this project was to develop a proof of concept protocol for the sequencing and genotyping of Shiga toxin-producing Escherichia coli (STEC) directly from stool specimens. We have developed an enrichment protocol that reliably achieves a substantially higher DNA yield belonging to E. coli, which provides adequate next-generation sequencing (NGS) data for downstream bioinformatics analysis. A custom bioinformatics pipeline was created to optimize and remove non-E. coli reads, assess the STEC versus commensal E. coli population in the samples, and build consensus sequences based on population allele frequency distributions. Side-by-side analysis of WGS from paired STEC isolates and matched primary stool specimens reveal that this method can reliably be implemented for many clinical specimens to directly genotype STEC and accurately identify clusters of disease outbreak when no STEC isolate is available for testing.


Subject(s)
Escherichia coli Infections/diagnosis , Feces/microbiology , Foodborne Diseases/diagnosis , Genome, Bacterial/genetics , Molecular Diagnostic Techniques/methods , Shiga-Toxigenic Escherichia coli/isolation & purification , DNA, Bacterial/genetics , Epidemiological Monitoring , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/epidemiology , Foodborne Diseases/epidemiology , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...