Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; 89(4): e202300410, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37943550

ABSTRACT

This work reports a biomimetic synthesis of polyarylated fluorene derivatives. The molecules are formed via intramolecular electrophilic aromatic substitution, resembling a cyclization leading towards the natural selaginpulvilins from selaginellins. The scope of the reaction was investigated, and the products were obtained in 60-95 % yields. Some of the compounds decompose to a stable radical. We investigated the nature and the origin of the radical using experimental methods, including EPR or electrochemical measurements, as well as theoretical methods, such as DFT calculations. Based on our observations, we hypothesize, that phenoxy radicals are formed in the first instance, which however undergo internal rearrangement to thermodynamically more stable carbon-centered radicals. The preliminary data also show the cytotoxic properties of some of the molecules.

2.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175178

ABSTRACT

The cyclopropylthiophene moiety has attracted the attention of the scientific community for its potential pharmaceutical applications. However, synthesis of the compounds containing this framework remains challenging, has rarely been reported and remains unresolved. Here we provide optimized syntheses for cyclopropylthiophenes and their derivatives, containing carbonyl, acetyl, carboxylic acid, methyl carboxylate, nitrile, bromide and sulfonyl chloride moieties.

3.
Sci Adv ; 9(5): eade4361, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36735785

ABSTRACT

Cytidine deaminases (CDAs) catalyze the hydrolytic deamination of cytidine and 2'-deoxycytidine to uridine and 2'-deoxyuridine. Here, we report that prokaryotic homo-tetrameric CDAs catalyze the nucleophilic substitution at the fourth position of N4-acyl-cytidines, N4-alkyl-cytidines, and N4-alkyloxycarbonyl-cytidines, and S4-alkylthio-uridines and O4-alkyl-uridines, converting them to uridine and corresponding amide, amine, carbamate, thiol, or alcohol as leaving groups. The x-ray structure of a metagenomic CDA_F14 and the molecular modeling of the CDAs used in this study show a relationship between the bulkiness of a leaving group and the volume of the binding pocket, which is partly determined by the flexible ß3α3 loop of CDAs. We propose that CDAs that are active toward a wide range of substrates participate in salvage and/or catabolism of variously modified pyrimidine nucleosides. This identified promiscuity of CDAs expands the knowledge about the cellular turnover of cytidine derivatives, including the pharmacokinetics of pyrimidine-based prodrugs.


Subject(s)
Pyrimidine Nucleosides , Pyrimidine Nucleosides/metabolism , Cytidine Deaminase/metabolism , Uridine/metabolism , Cytidine , Deoxycytidine
4.
J Nat Prod ; 81(6): 1451-1459, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29787267

ABSTRACT

An efficient protocol for the isolation of narciclasine from common Amaryllidaceae bulbs, separation from haemanthamine, and the occurrence of a trace alkaloid, 2- epi-narciclasine, are reported. Attempts to convert natural narciclasine to its C-2 epimer by Mitsunobu inversion or oxidation/reduction sequences were compromised by rearrangement and aromatization processes, through which a synthesis of the alkaloid narciprimine was achieved. The methylation of the 7-hydroxy group of natural narciclasine followed by protection of the 3,4-diol function and oxidation/reduction sequence provided the target C-2 epimer. A de novo chemoenzymatic synthesis of 2- epi-narciclasine from m-dibromobenzene is also described. Haemanthamine and narciprimine were readily detected in the crude extracts of Narcissus and Galanthus bulbs containing narciclasine, and the occurrence of 2- epi-narciclasine as a trace natural product in Galanthus sp. is reported for the first time.


Subject(s)
Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae/chemistry , Galanthus/chemistry , Narcissus/chemistry , Phenanthridines/chemistry , Alkaloids/chemistry , Oxidation-Reduction , Phenanthrenes/chemistry , Plant Roots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...