Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(27): 18962-18969, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38952289

ABSTRACT

The charge carriers in conducting pyrrole-co-poly(pyrrole-3-carboxylic) were examined using high-pressure Raman spectroscopy. The molecular structure of the new copolymer was investigated using high-resolution 13C ssNMR, 1H-13C 2D NMR correlation spectroscopy, and density functional theory (DFT) calculations. Bands in Raman spectra that showed the presence of polarons and bipolarons were studied. It was observed that the quantity of polarons and bipolarons correlated with the hydrostatic pressure. At a pressure of 4 GPa, an anomaly in the correlation between pressure and the position of the Raman band was identified.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124368, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38733910

ABSTRACT

The spectroscopic and electrical properties of poly(pyrrole-3-carboxylic acid) doped with p-TSA- (p-toluenesulfonate) and AQS- (anthraquinone sulfonate) were investigated. The variation in electrical conductivity as a function of temperature shows that the systems have semiconductor-like electrical characteristics. The investigated polymers exhibit 3D conductivity and less than 0.6 eV energy gaps. The IR and Raman spectra show that the charge carriers are polarons and bipolarons. Doping the poly(pyrrole-3-carboxylic acid) increases the number of charge carriers. Electron paramagnetic resonance has shown that localized polarons and bipolarons are formed within these polymers.

3.
Chemistry ; 30(20): e202303933, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38311598

ABSTRACT

Our study focuses on molecular rotors with fast-moving rotators and their potential applications in the development of new amphidynamic crystals. Steroidal molecular rotors with a dipolar fluorine-substituted phenyl group as the rotator were synthesized and characterized. Three different rotors were investigated with varying numbers of fluorine atoms. A comprehensive analysis was performed using vibrational spectroscopy (Raman, FT-IR), electronic circular dichroism (ECD), and dielectric response to understand the behavior of the investigated model rotors. The results were supported by theoretical calculations using Density Functional Theory (DFT) methods. The angle-dependent polarized Raman spectra confirmed the crystallinity of the samples. Nearly frequency and temperature-independent permittivity suggest low-frequency librational motion of stators. An in-depth analysis of ECD spectra revealed high conformational flexibility in solution, resulting in low ECD effects, while in the solid-state with restricted rotation, significant ECD effects were observed. These findings shed light on the conformational behavior and potential applications of the studied steroidal molecular rotors.

4.
Acta Crystallogr C Struct Chem ; 79(Pt 11): 480-490, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37874207

ABSTRACT

5-[(Dimethylamino)methylidene]-4-{[3-(trifluoromethyl)phenyl]amino}-1,3-thiazol-2(5H)-one and the [4-(trifluoromethyl)phenyl]amino derivative, both C13H12F3N3OS, with the trifluoromethyl group substituted at the arene ring at the meta and para positions, were synthesized to study the structural changes associated with proton tautomerism of the amidine system. The studied compounds were found to be in the amine tautomeric form in both the solid and the liquid (dimethyl sulfoxide solutions) phase. In both isomers, the [(trifluoromethyl)phenyl]amino residue assumes a synperiplanar conformation with respect to the thiazolone system, while the 5-[(dimethylamino)methylidene] residue adopts the Z configuration. Density functional theory (DFT) calculations correctly predicted that the synperiplanar arrangement is favoured in both isomers. In the crystal, the whole independent molecule of the para compound is disordered over two alternative positions, with occupancy factors of 0.926 (3) and 0.074 (3).

5.
Sci Rep ; 13(1): 17398, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833356

ABSTRACT

A negative linear temperature expansion and a negative linear compressibility were observed for imidazolium benzoate salt. Its strongly anisotropic strain induced by the temperature and pressure changes has been explained by the mechanism of H-bonded helices deformed in the structure. X-ray diffraction and vibrational spectroscopy were used to analyze interactions in the crystal. The Quantum Theory of Atoms in Molecules (QTAiM) approach was applied to analyze the hydrogen bonds and other interactions. In the salt under study, the interactions within the helix are substantially higher in energy than between helices. With decreasing temperature and increasing pressure, the value of the helix pitch increases while the value of the semi-major axis decreases, which results in the negative linear expansion and negative linear compression, respectively.

6.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 3): 220-232, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37191351

ABSTRACT

Three new 5-dimethylaminomethylidene-4-phenylamino-1,3-thiazol-2(5H)-ones with an hydroxyl group in the ortho, meta and para positions on the phenyl ring were synthesized in order to deduce the structural changes occurring on prototropic tautomerism of the amidine system. The existence of all the title compounds solely in the amino tautomeric form has been established in the solid and liquid (dimethyl sulfoxide solution) phases. The title compounds are analyzed from the point of view of the electronic effects and conformational freedom of their molecules. The intermolecular interactions in the crystals and their supramolecular architecture are highlighted.

7.
Molecules ; 26(24)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34946545

ABSTRACT

An aqueous solution of sodium citrate stabilized gold nanoparticles (AuNP) in the presence of N-lauroyl-L-alanine (C12ALA) forms a stable gel. The structure of the gel and the distribution profile of AuNP in it were analyzed. Will nanoparticles separated from each other with sodium citrate behave in the same way in solution and trapped in the gel matrix? Will the spatial limitation of solvent molecules aggregate nanoparticles and destroy their homogeneity? These questions are very important from the point of view of the use of gold nanoparticles, trapped in the gel structure as carriers of drugs in the slow-release process. The lack of homogeneity of this distribution will have a major impact on the rate of release of the appropriate amount of therapeutic drug from the matrix. In this work, we attempt to answer these questions. The performed biological assays revealed that both C12ALA and C12ALA-AuNP show an excellent level of biological neutrality. They might be used as a transporting medium for a drug delivery without affecting the drug's activity.


Subject(s)
Alanine/analogs & derivatives , Drug Carriers , Gold , Metal Nanoparticles , Alanine/chemistry , Alanine/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Gold/chemistry , Gold/pharmacology , HeLa Cells , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use
8.
Molecules ; 26(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361809

ABSTRACT

The increase in conductivity with temperature in 1H-pyrazol-2-ium 2,6-dicarboxybenzoate monohydrate was analyzed, and the influence of the mobility of the water was discussed in this study. The electric properties of the salt were studied using the impedance spectroscopy method. WB97XD/6-311++G(d,p) calculations were performed, and the quantum theory of atoms in molecules (QTAiM) approach and the Hirshfeld surface method were applied to analyze the hydrogen bond interaction. It was found that temperature influences the spectroscopic properties of pyrazolium salt, particularly the carbonyl and hydroxyl frequencies. The influence of water molecules, connected by three-center hydrogen bonds with co-planar tetrameters, on the formation of structural defects is also discussed in this report.

9.
J Phys Chem B ; 124(43): 9625-9635, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33064491

ABSTRACT

Properly designed molecular rotors with sizable stators and a fast-moving rotator could provide efficient building blocks for amphidynamic crystals. Herein, we report the synthesis of steroidal compounds 1, 2, and 3 and their deuterated analogues 1D, 2D, and 3D envisioned to work as molecular rotors. The obtained compounds were characterized by attenuated total reflection-infrared, Raman, and circular dichroism (CD) spectroscopy measurements. The interpretation of spectra was supported by theoretical calculations using density functional theory methods. The analysis of the most characteristic bands confirmed different molecular dynamics of the rotors investigated. Angle-dependent polarized Raman spectra showed the crystallinity of some samples. Electronic CD (ECD) spectra of compounds 1-3 and their relevant deuterated analogues 1D-3D are identical. The increase of the band intensity with lowering the temperature shows that the equilibrium is shifted to the thermodynamically most stable conformer. ECD spectra simulated at the TDFFT level of theory for compound 3 were compared with experimental results. It was proved that conformer 3a, with a torsion angle of +50°, exhibits the best agreement with the experimental results. Simulated vibrational CD and IR spectra for conformer 3a and its deuterated analogue 3Da also display good agreement with experimental results. In light of our comprehensive investigations, we evidenced that steroidal compounds 1, 2, and 3 can work as molecular rotors.

10.
Phys Chem Chem Phys ; 21(31): 17152-17162, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31342031

ABSTRACT

A new approach towards achieving proton conducting materials based on aromatic acids and heterocyclic bases was proposed. It can lead to a new material in which all hydrogen bonding interactions are of medium or weak strength and rotations of the base and acid molecules are possible. If the above conditions are met, one can expect a high value of proton conductivity governed by the Grotthuss mechanism. Two salts of imidazole, one with benzoic acid having one carboxylic acid group and another with salicylic acid having a carboxylic and hydroxyl group located in the ortho position, were synthesized. Physical properties of these newly synthesized proton conducting salts were investigated using experimental and theoretical methods. The structures of these salts were studied by X-ray diffraction and 1H and 13C NMR techniques. The intermolecular interactions in the salts were analyzed by DFT calculations, within the QTAiM theory, and by Hirshfeld surface analysis. The π-π interactions, the proton conduction pathways, and the transport mechanism are also discussed.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 192: 393-400, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29195193

ABSTRACT

The synthesis and characterization of acyclic and cyclic molecular rotors with 1,4-diethynylphenylene-d4 rotators are described. The ATR-FTIR and Raman spectra of acyclic rotor 3 and cyclic rotor 5E were measured and interpreted. A feature of ATR-FTIR spectrum of rotor 5E is a strong two-component band around 1730cm-1 attributed to symmetric and asymmetric stretching vibration of the carbonyl group, while this is not observed in rotor 3. Raman investigation in the wide temperature range of 350 - 10K was carried out. The splitting of Raman bands in the region of stretching vibration of CC double and triple bonds at 170 and 260K for rotor 5E is observed. The splitting of bands is due to changes in molecular structure.

12.
J Chem Phys ; 147(6): 064503, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28810750

ABSTRACT

We explore the nature of the metal-insulator transition in the two-dimensional organic compound ß″-(BEDT-TTF)2Hg(SCN)2Cl by x-ray, electrical transport, ESR, Raman, and infrared investigations. Magnetic and vibrational spectroscopy concurrently reveal a gradual dimerization along the stacking direction (a-b), setting in already at the crossover temperature of 150 K from the metallic to the insulating state. A spin gap of Δσ=47 meV is extracted. From the activated resistivity behavior below T = 55 K, a charge gap of Δρ=60 meV is derived. At TCO = 72 K, the C=C vibrational modes reveal the development of a charge-ordered state with a charge disproportionation of 2δρ=0.34e. In addition to a slight structural dimerization, charge-order causes stripes most likely perpendicular to the stacks.

13.
Pol Przegl Chir ; 89(3): 44-47, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28703108

ABSTRACT

Autorzy przedstawiaja 21 -letniego chorego z niepelnym zwrotem jelit z objawami przewleklej niedroznosci górnego odcinka przewodu pokarmowego i trudnosci diagnostyczne. Rozstrzygajacym badaniem byla TK jamy brzusznej z kontrastem. Po operacji sposobem Ladda chory zostal wyleczony.


Subject(s)
Intestinal Obstruction/diagnostic imaging , Intestinal Obstruction/surgery , Intestine, Small/pathology , Upper Gastrointestinal Tract/diagnostic imaging , Humans , Male , Radiography, Abdominal , Young Adult
14.
Article in English | MEDLINE | ID: mdl-28390248

ABSTRACT

In this work, we present the spectral investigation of the interactions between the coverage with alginic acid (AA) and nanoparticles for three different composites containing 74, 80, and 88wt% of magnetite. These results show that the Fe3O4 nanoparticles are coated with the AA and indicate that there is an interaction between them. Moreover, we have investigated the thermal and magnetic properties of all investigated compounds. We show that bonding of alginic acid to the surface of magnetite results in better thermal stability of the polymer and in higher temperature of AA chains degradation. We find that for dense assembly of magnetite nanoparticles, at low temperatures, the intergranular coupling becomes much stronger than between nanoparticles dispersed in composites.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 180: 224-233, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28315619

ABSTRACT

Imidazolium selenate dihydrate (ImH2)2SeO4·2H2O crystals have been investigated using Raman and IR spectroscopy. Experimental data were supported by the quantum-chemical calculations (DFT), Hirshfield surfaces and fingerprint plots analysis, and Bader theory calculations. The imidazolium selenate dihydrate crystal exhibits high proton conductivity of the order of ~10-1S/m at T=333K. The spectra of this compound are dominated by bands related to the lattice modes, the internal vibrations of the protonated imidazole cation, selenate anion, water molecules, and hydrogen bonds network. For the imidazolium selenate dihydrate crystal, the formal classification of the fundamental modes has been carried out.

16.
J Colloid Interface Sci ; 490: 279-286, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27914326

ABSTRACT

Organic ionic gel (OIG) electrolytes, also known as gel electrolytes or ionogels are one example of modern functional materials with the potential to use in wide range of electrochemical applications. The functionality of OIGs arises from the thermally reversible solidification of electrolytes or ionic liquids and their superior ionic conductivity. To understand and to predict the properties of these systems it is important to get the knowledge about the interactions on molecular level between the solid gelator matrix and the electrolyte solution. This paper reports the spectroscopic studies (FT-IR, UV-Vis and Raman) of the gel electrolyte based on low molecular weight gelator methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside and solution of quaternary ammonium salt, tetramethylammonium bromide. The solidification process was based on sol-gel technique. Below characteristic temperature, defined as gel to sol phase transition temperature, Tgs, the samples were solid-like and showed high conductivity values of the same order as observed for pure liquid electrolytes. The investigations were performed for a OIGs in a wide range of molar concentrations of the electrolyte solution.

17.
Chemphyschem ; 16(10): 2182-91, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26017555

ABSTRACT

Thermal annealing of nanodiamonds with diameters of a few nanometers (in an inert atmosphere and at temperatures in the range: 1500-1800 °C) leads to the formation of carbon nano-onions (CNOs) with diameters between 5 and 6 nm, which correspond to nanostructures with six to eight graphitic layers. The resulting spherical CNO structures were thermally modified under different atmospheres and characterized by SEM, TEM, thermogravimetric analysis and spectroscopic (Raman and diffuse reflectance infrared Fourier transform/FTIR) spectroscopy. The electrochemical properties of the CNOs prepared under different conditions were determined and compared. The results reveal that the CNOs show different structures with predominant spherical "small" carbon nano-onions. The aim of this article is to investigate the impact of the CNO's synthesis conditions on the resulting structures and study the effect of further thermal modifications on the sizes, shapes and homogeneity of these carbon nanostructures.

18.
J Phys Chem B ; 118(14): 4005-15, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24635027

ABSTRACT

Organogels are soft materials consisting of low-molecular-mass gelators (LMOGs) self-assembled through noncovalent interactions into 3D structures, in which free spaces are filled by organic solvents. 4,6,4',6'-O-terephthylidene-bis(methyl-α-d-glucopyranoside) (1) is found to be a new LMOG. It gelatinizes only a limited number of solvents. Here, the gels of 1 with ethylene glycol (EG) and 1,3-propanediol (PG) are investigated with FT-IR, Raman, and UV-vis spectroscopies, the NMR relaxometry and diffusometry methods, and microscopic observation. The chemical structures of both solvents are closely related, but the variety of physical characteristics of the gels is large. The 1/PG gels are thermally more stable compared to 1/EG gels. The types of aggregates are most likely the H- and J-type in 1/EG gels and the J-type in 1/PG gels. Different microstructures are observed: bundles of crossing fibers for 1/EG and a honeycomb-like matrix for 1/PG gels. The diffusivity of the EG solvent in gels with 1 behaves as expected, decreasing with increasing gelator concentration, whereas the opposite behavior is observed for the PG solvent. This is a most fascinating result. To explain the diffusion enhancement, we suggest that a dynamic hydrogen bonding network of PG solvent in gel matrixes is disrupted due to solvent-gelator interaction. The direct proof of this interaction is given by the observed low frequency dispersion of the spin-lattice relaxation time of solvents in the gel matrixes.


Subject(s)
Carbohydrates/chemistry , Gels/chemistry , Monosaccharides/chemistry , Solvents/chemistry , Diffusion , Ethylene Glycol/chemistry , Magnetic Resonance Spectroscopy , Phase Transition , Propylene Glycols/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Transition Temperature
19.
J Phys Chem A ; 117(25): 5241-50, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23768132

ABSTRACT

Polarized reflectivity spectra versus temperature of two isostructural charge-transfer salts κ-(ET)4[M(CN)6][N(C2H5)4]·2H2O (M = Co(III) and Fe(III)) (ET = bis(ethylenedithio)tetrathiafulvalene) were studied. The electronic and vibrational spectra exhibit a drastic change at around 150 K. On the basis of the spectral analysis, we deduced the nature of the phase transition. The phase transition at 150 K is due to a charge ordering; above this temperature, strong charge fluctuations are observed.

20.
Chemistry ; 18(9): 2600-8, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22262451

ABSTRACT

Small multilayer fullerenes, also known as carbon nano-onions (CNOs; 5-6 nm in diameter, 6-8 shells), show higher reactivity than other larger carbon nanostructures. Here we report the first example of an in situ polymerization of aniline on phenyleneamine-terminated CNO surfaces. The green, protonated, conducting emeraldine polyaniline (PANI) was directly synthesized on the surface of the CNO. The functionalized and soluble CNO/PANI composites were characterized by TEM, SEM, DSC, Raman, and infrared spectroscopy. The electrochemical properties of the conducting CNO/PANI films were also investigated. In comparison with pristine CNOs, functionalized carbon nanostructures show dramatically improved solubility in protic solvents, thus enabling their easy processing for coatings, nanocomposites, and biomedical applications.


Subject(s)
Aniline Compounds/chemistry , Carbon/chemistry , Fullerenes/chemistry , Nanocomposites/chemistry , Nanostructures/chemistry , Nanotechnology , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...