Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 59(2): 271-276, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-32225303

ABSTRACT

In this work, we investigate methods of fabricating a device for the optical actuation of nanoparticles. To create the microfluidic channel, we pursued three fabrication methods: SU-8 to molded polydimethylsiloxane soft lithography, laser etching of glass, and deep reactive ion etching of fused silica. We measured the surface roughness of the etched sidewalls, and the laser power transmission through each device. We then measured the radiation pressure on 0.5-µm particles in the best-performing fabricated device (etched fused silica) and in a square glass capillary.

2.
Phys Rev Lett ; 118(21): 210501, 2017 May 26.
Article in English | MEDLINE | ID: mdl-28598674

ABSTRACT

The realization of quantum networks and quantum repeaters remains an outstanding challenge in quantum communication. These rely on the entanglement of remote matter systems, which in turn requires the creation of quantum correlations between a single photon and a matter system. A practical way to establish such correlations is via spontaneous Raman scattering in atomic ensembles, known as the Duan-Lukin-Cirac-Zoller (DLCZ) scheme. However, time multiplexing is inherently difficult using this method, which leads to low communication rates even in theory. Moreover, it is desirable to find solid-state ensembles where such matter-photon correlations could be generated. Here we demonstrate quantum correlations between a single photon and a spin excitation in up to 12 temporal modes, in a ^{151}Eu^{3+}-doped Y_{2}SiO_{5} crystal, using a novel DLCZ approach that is inherently multimode. After a storage time of 1 ms, the spin excitation is converted into a second photon. The quantum correlation of the generated photon pair is verified by violating a Cauchy-Schwarz inequality. Our results show that solid-state rare-earth-ion-doped crystals could be used to generate remote multimode entanglement, an important resource for future quantum networks.

3.
Phys Rev Lett ; 117(3): 037203, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27472133

ABSTRACT

We report on a direct measurement of the pairwise antisymmetric exchange interaction, known as the Dzyaloshinsky-Moriya interaction (DMI), in a Nd^{3+}-doped YVO_{4} crystal. To this end, we introduce a broadband electron spin resonance technique coupled with an optical detection scheme which selectively detects only one Nd^{3+}-Nd^{3+} pair. Using this technique we can fully measure the spin-spin coupling tensor, allowing us to experimentally determine both the strength and direction of the DMI vector. We believe that this ability to fully determine the interaction Hamiltonian is of interest for studying the numerous magnetic phenomena where the DMI interaction is of fundamental importance, including multiferroics. We also detect a singlet-triplet transition within the pair, with a highly suppressed magnetic-field dependence, which suggests that such systems could form singlet-triplet qubits with long coherence times for quantum information applications.

4.
Phys Rev Lett ; 114(23): 230502, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26196785

ABSTRACT

Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies suggest this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here, we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read-out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.

SELECTION OF CITATIONS
SEARCH DETAIL
...