Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 39(Database issue): D111-7, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21097781

ABSTRACT

FlyFactorSurvey (http://pgfe.umassmed.edu/TFDBS/) is a database of DNA binding specificities for Drosophila transcription factors (TFs) primarily determined using the bacterial one-hybrid system. The database provides community access to over 400 recognition motifs and position weight matrices for over 200 TFs, including many unpublished motifs. Search tools and flat file downloads are provided to retrieve binding site information (as sequences, matrices and sequence logos) for individual TFs, groups of TFs or for all TFs with characterized binding specificities. Linked analysis tools allow users to identify motifs within our database that share similarity to a query matrix or to view the distribution of occurrences of an individual motif throughout the Drosophila genome. Together, this database and its associated tools provide computational and experimental biologists with resources to predict interactions between Drosophila TFs and target cis-regulatory sequences.


Subject(s)
Databases, Genetic , Drosophila Proteins/metabolism , Drosophila/genetics , Regulatory Elements, Transcriptional , Transcription Factors/metabolism , Animals , Bacteria/genetics , Binding Sites , Software , Two-Hybrid System Techniques , User-Computer Interface
2.
BMC Bioinformatics ; 11: 237, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20459804

ABSTRACT

BACKGROUND: Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) or ChIP followed by genome tiling array analysis (ChIP-chip) have become standard technologies for genome-wide identification of DNA-binding protein target sites. A number of algorithms have been developed in parallel that allow identification of binding sites from ChIP-seq or ChIP-chip datasets and subsequent visualization in the University of California Santa Cruz (UCSC) Genome Browser as custom annotation tracks. However, summarizing these tracks can be a daunting task, particularly if there are a large number of binding sites or the binding sites are distributed widely across the genome. RESULTS: We have developed ChIPpeakAnno as a Bioconductor package within the statistical programming environment R to facilitate batch annotation of enriched peaks identified from ChIP-seq, ChIP-chip, cap analysis of gene expression (CAGE) or any experiments resulting in a large number of enriched genomic regions. The binding sites annotated with ChIPpeakAnno can be viewed easily as a table, a pie chart or plotted in histogram form, i.e., the distribution of distances to the nearest genes for each set of peaks. In addition, we have implemented functionalities for determining the significance of overlap between replicates or binding sites among transcription factors within a complex, and for drawing Venn diagrams to visualize the extent of the overlap between replicates. Furthermore, the package includes functionalities to retrieve sequences flanking putative binding sites for PCR amplification, cloning, or motif discovery, and to identify Gene Ontology (GO) terms associated with adjacent genes. CONCLUSIONS: ChIPpeakAnno enables batch annotation of the binding sites identified from ChIP-seq, ChIP-chip, CAGE or any technology that results in a large number of enriched genomic regions within the statistical programming environment R. Allowing users to pass their own annotation data such as a different Chromatin immunoprecipitation (ChIP) preparation and a dataset from literature, or existing annotation packages, such as GenomicFeatures and BSgenome, provides flexibility. Tight integration to the biomaRt package enables up-to-date annotation retrieval from the BioMart database.


Subject(s)
Chromatin Immunoprecipitation/methods , Oligonucleotide Array Sequence Analysis/methods , Software , Binding Sites , Genome
3.
Cancer Res ; 62(11): 3233-43, 2002 Jun 01.
Article in English | MEDLINE | ID: mdl-12036939

ABSTRACT

The ordered expression of genes after growth factor stimulation in G(1) supportsthe onset of DNA replication. To characterize regulatory events during S-phase when cell cycle progression has become growth factor independent, we have profiled the expression of over 7,000 human genes using GeneChip DNA microarray analysis. HeLa cells were synchronized at the beginning of S-phase by thymidine/aphidicolin block, and RNA populations were analyzed throughout the S and G(2) phases. Expression of genes involved in DNA replication is maximal during early S-phase, whereas histone mRNAs peak at mid S-phase. Genes related to cell proliferation, including those encoding cyclins, oncoproteins, growth factors, proteins involved in signal transduction, and DNA repair proteins, follow distinct temporal patterns of expression that are functionally linked to initiation of DNA replication and progression through S-phase. The timing of expression for many genes in tumor-derived HeLa cells is highly conserved when compared with normal cells. In contrast, a number of genes show growth phenotype-related expression patterns that may directly reflect loss of stringent growth control in tumor cells. Our data reveal there is a core subset of cell growth-related genes that is fundamental to cycling cells irrespective of cell growth phenotype.


Subject(s)
Cell Cycle Proteins , Cell Cycle/genetics , DNA Replication/genetics , DNA-Binding Proteins , Gene Expression Regulation, Leukemic , Nucleosomes/genetics , Cell Division/genetics , DNA/biosynthesis , DNA/genetics , DNA Repair/genetics , E2F Transcription Factors , G1 Phase/genetics , Gene Expression Profiling , HeLa Cells , Histones/genetics , Humans , Mitosis/genetics , Nucleosomes/metabolism , Oligonucleotide Array Sequence Analysis , RNA/genetics , RNA/metabolism , S Phase/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...