Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chemosphere ; 255: 126877, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32402871

ABSTRACT

Introduction of invasive species can have a profound impact on food web structure and therefore on trophic transfer of contaminants. In the St. Lawrence River (Canada), 20 years after its first detection in the system, invasive round goby (Neogobius melanostomus) has become the main prey for several piscivorous species. To evaluate the accumulation, trophic transfer, and the ecological risk of polybrominated diphenyl ethers (PBDEs) in this recently modified freshwater food web, samples of sediment, invertebrates, fish and aquatic bird eggs and plasma were collected. Sampling sites were located upstream and at two locations downstream of the Montreal wastewater treatment plant outfall. The results suggest that the influence of the WWTP effluent on PBDEs concentrations varied among the various compartments of this recently modified freshwater food web. The results also suggest that although predatory fish have switched to consuming round goby as a prey item instead of native yellow perch, this new feeding behaviour is not expected to have important impacts on the level of transfer of PBDE within this food web. The biota-sediment accumulation factors (BSAFs) ranged from 0.6 to 436, whereas biomagnification factors (BMFs) varied between 0.2 and 475. Despite our conservative method of risk assessment, we calculated an important risk for piscivorous fish and gull eggs within this study area.


Subject(s)
Environmental Monitoring , Food Chain , Halogenated Diphenyl Ethers/analysis , Water Pollutants, Chemical/analysis , Animals , Aquatic Organisms , Canada , Charadriiformes , Fishes , Fresh Water , Introduced Species , Invertebrates , Perches , Rivers , Wastewater/chemistry
2.
Fish Physiol Biochem ; 45(6): 1813-1828, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31300974

ABSTRACT

Acute elevation of cortisol via activation of the hypothalamic-pituitary-interrenal (HPI) axis aids the fish in dealing with a stressor. However, chronic elevation of cortisol has detrimental effects and has been studied extensively in lab settings. However, data pertaining to wild teleosts are lacking. Here, we characterized the metabolic consequences of prolonged cortisol elevation (96 h) in wild-caught pumpkinseed (Lepomis gibbosus). Pumpkinseed were implanted with cocoa butter alone (sham) or containing cortisol (25 mg kg-1 body weight), and at 24, 48, 72, and 96 h, tissue samples were collected, whole-body ammonia excretion was determined, and whole-organism metabolism was assessed using intermittent flow respirometry. Cortisol-treated pumpkinseed exhibited the highest plasma cortisol concentration at 24 h post-implantation, with levels decreasing over the subsequent time points although remaining higher than in sham-treated fish. Cortisol-treated fish exhibited higher standard and maximal metabolic rates than sham-treated fish, but the effect of cortisol treatment on aerobic scope was negligible. Indices of energy synthesis/mobilization, including blood glucose concentrations, hepatosomatic index, hepatic glycogen concentrations, and ammonia excretion rates, were higher in cortisol-treated fish compared with controls. Our work suggests that although aerobic scope was not diminished by prolonged elevation of cortisol levels, higher metabolic expenditures may be of detriment to the animal's performance in the longer term.


Subject(s)
Energy Metabolism , Hydrocortisone/administration & dosage , Perciformes/physiology , Ammonia/metabolism , Animals , Hydrocortisone/blood , Hypothalamo-Hypophyseal System , Stress, Physiological
3.
Arch Environ Contam Toxicol ; 76(2): 216-230, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30536038

ABSTRACT

Legacy mercury (Hg) sediment deposits are a long-term issue within the St. Lawrence River (Cornwall) area of concern with three depositional areas along the Cornwall, ON waterfront containing sediments that exceed the Ontario Sediment Quality Guidelines for Hg. Assessing the bioavailability of these Hg-contaminated sediments plays a crucial role in evaluating the effectiveness of the Cornwall Sediment Strategy based on a natural recovery approach. We collected specimens of fallfish (Semotilus corporalis), round goby (Neogobius melanostomus), and yellow perch (Perca flavescens) to assess spatial and temporal trends of Hg concentrations in various areas along the Cornwall waterfront, including zones of contaminated sediments and non-contaminated reference sites. This study revealed that (1) Hg concentrations in fish collected from the contaminated zones remain greater than those of fish from non-impacted locations, indicating that natural recovery is not yet achieved, (2) total Hg concentrations in yellow perch collected in 2016 were greater than those obtained during a previous assessment, indicating a reversal of the previously observed long-term declines, and (3) total Hg concentrations in yellow perch collected at the outlet of Gray's Creek compared with yellow perch from contaminated zones, suggesting other important inputs of Hg to the ecosystem than the legacy contaminated sediments.


Subject(s)
Fishes/metabolism , Geologic Sediments/analysis , Mercury/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Cyprinidae/metabolism , Environmental Monitoring , Ontario , Perches/metabolism
4.
Conserv Physiol ; 6(1): coy056, 2018.
Article in English | MEDLINE | ID: mdl-30364036

ABSTRACT

Equatorial fishes, and the critically important fisheries based on them, are thought to be at-risk from climate warming because the fishes have evolved in a relatively aseasonal environment and possess narrow thermal tolerance windows that are close to upper thermal limits. We assessed survival, growth, aerobic performance and critical thermal maxima (CTmax) following acute and 21 d exposures to temperatures up to 4°C higher than current maxima for six species of freshwater fishes indigenous to tropical countries and of importance for human consumption. All six species showed 1.3-1.7°C increases in CTmax with a 4°C rise in acclimation temperature, values which match up well with fishes from other climatic regions, and five species had survival >87% at all temperatures over the treatment period. Specific growth rates varied among and within each species in response to temperature treatments. For all species, the response of resting metabolic rate (RMR) was consistently more dynamic than for maximum metabolic rate, but in general both acute temperature exposure and thermal acclimation had only modest effects on aerobic scope (AS). However, RMR increased after warm acclimation in 5 of 6 species, suggesting incomplete metabolic compensation. Taken in total, our results show that each species had some ability to perform at temperatures up to 4°C above current maxima, yet also displayed certain areas of concern for their long-term welfare. We therefore suggest caution against the overly broad generalization that all tropical freshwater fish species will face severe challenges from warming temperatures in the coming decades and that future vulnerability assessments should integrate multiple performance metrics as opposed to relying on a single response metric. Given the societal significance of inland fisheries in many parts of the tropics, our results clearly demonstrate the need for more species-specific studies of adaptive capacity to climate change-related challenges.

5.
Article in English | MEDLINE | ID: mdl-26803990

ABSTRACT

Polychlorinated biphenyls (PCBs) are recognized physiological stressors to fish which over time may impair individual performance and perhaps fitness by inducing changes that could have population-level consequences. PCB-126 (3,3',4,4',5-pentachlorobiphenyl) accumulates in lipids and can subsequently be released into the bloodstream during periods of high activity that involve the mobilization of stored fuels to meet with increasing energy demands. The goal of this study was to determine if a sublethal exposure to PCB-126 altered the content of tissue energy supplies (carbohydrates, proteins, amino acids, triglycerides) and impaired swimming performance as well as oxygen consumption in rainbow trout (Oncorhynchus mykiss). Trout were injected intraperitoneally with a single Low (100µgkg(-1)) or High (400µgkg(-1)) dose of PCB-126 then swimming performance and metabolic rates from 1 to 9days post-injection were compared to Control (non-dosed) fish. Liver ethoxyresorufin-O-deethylase (EROD) activity was assessed as an indication of PCB-126 intoxication while plasma and white muscle tissue metabolites were analyzed as an index of physiological disturbance. Swimming performance, assessed using two successive modified critical swimming speed (Ucrit) tests, was highest for fish in the High PCB-126 treatment; however, their initial condition factor (K) was also higher, largely due to their greater body mass. Trout in the High and Low PCB-126 treatments exhibited impaired recovery following intense exercise as they swam comparatively poorly when provided a second challenge. PCB-exposed fish exhibited reduced spleen somatic indices as well as muscle glucose and glycogen contents; whereas plasma cortisol and glucose levels were elevated, indicating higher metabolic costs during recovery and muscle restoration. Overall, this research provides insights into the sublethal effects of a toxic organic compound on swimming performance in trout.


Subject(s)
Energy Metabolism/drug effects , Oncorhynchus mykiss/metabolism , Polychlorinated Biphenyls/toxicity , Swimming , Water Pollutants, Chemical/toxicity , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Cytochrome P-450 CYP1A1/metabolism , Dose-Response Relationship, Drug , Female , Liver/drug effects , Liver/enzymology , Oncorhynchus mykiss/blood , Oncorhynchus mykiss/physiology , Oxygen Consumption/drug effects
6.
Dis Aquat Organ ; 108(2): 113-27, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24553417

ABSTRACT

Mycobacteriosis, a chronic bacterial disease of fishes, is prevalent in adult striped bass from Chesapeake Bay (USA). Although environmental factors may play a role in disease expression, the interaction between the disease and environmental stress remains unexplored. We therefore examined the individual and interactive effects of elevated temperature, hypoxia, and mycobacteriosis on the metabolism of wild-caught adult striped bass from Chesapeake Bay using respirometry. Because the spleen is the primary target organ of mycobacteriosis in striped bass, we hypothesized that the disease interferes with the ability of fish to increase their hematocrit in the face of increasing oxygen demands. We determined standard metabolic rate (SMR), maximum metabolic rate under normoxia (MMRN), critical oxygen saturation (S(crit)), and MMR under hypoxia (3 mg O(2) l-1: MMR(H)) for healthy and visibly diseased fish (i.e. exhibiting skin lesions indicative of mycobacteriosis). Measurements were taken at a temperature within the preferred thermal range (20°C) and at an elevated temperature (28°C) considered stressful to striped bass. In addition, we calculated aerobic scope (AS(N) = MMR(N) - SMR, AS(H) = MMR(H) - SMR) and factorial scope (FS(N) = MMR(N) SMR-1, FS(H) = MMR(H) SMR-1). SMR increased with increasing temperature, and hypoxia reduced MMR, AS, and FS. Mycobacteriosis alone did not affect either MMR(N) or MMR(H). However, elevated temperature affected the ability of diseased striped bass to tolerate hypoxia (S(crit)). Overall, our data indicate that striped bass performance under hypoxia is impaired, and that elevated water temperatures, hypoxia, and severe mycobacteriosis together reduce aerobic scope more than any of these stressors acting alone. We conclude that the scope for activity of diseased striped bass in warm hypoxic waters is significantly compromised.


Subject(s)
Bass/metabolism , Energy Metabolism/physiology , Fish Diseases/microbiology , Mycobacterium Infections/veterinary , Oxygen/pharmacology , Temperature , Animals , Fish Diseases/metabolism , Mycobacterium Infections/metabolism , Oxygen/chemistry , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
7.
Conserv Physiol ; 2(1): cou033, 2014.
Article in English | MEDLINE | ID: mdl-27293654

ABSTRACT

Current rates of biodiversity decline are unprecedented and largely attributed to anthropogenic influences. Given the scope and magnitude of conservation issues, policy and management interventions must maximize efficiency and efficacy. The relatively new field of conservation physiology reveals the physiological mechanisms associated with population declines, animal-environment relationships and population or species tolerance thresholds, particularly where these relate to anthropogenic factors that necessitate conservation action. We propose a framework that demonstrates an integrative approach between physiology, conservation and policy, where each can inform the design, conduct and implementation of the other. Each junction of the conservation physiology process has the capacity to foster dialogue that contributes to effective implementation, monitoring, assessment and evaluation. This approach enables effective evaluation and implementation of evidence-based conservation policy and management decisions through a process of ongoing refinement, but may require that scientists (from the disciplines of both physiology and conservation) and policy-makers bridge interdisciplinary knowledge gaps. Here, we outline a conceptual framework that can guide and lead developments in conservation physiology, as well as promote innovative research that fosters conservation-motivated policy.

8.
Aquat Toxicol ; 104(1-2): 80-5, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21543052

ABSTRACT

Despite its role as an essential micronutrient, copper (Cu) can be present in aquatic ecosystems at concentrations able to cause adverse health effects on aquatic organisms. Although Cu is acquired by fish by either water or diet, studies that have investigated Cu impacts in fish have mainly focused on the toxicity of waterborne Cu. Moreover, as the majority of experiments were carried out under simplified conditions, little is known about the effects of natural factors other than competitive ions on Cu toxicity in fish. As temperature is a primary factor that affects the physiological state of poikilotherm organisms, we investigated the individual and combined effects of temperature and waterborne or dietary Cu on fathead minnows (Pimephales promelas). Fish were exposed to environmentally realistic concentrations of waterborne or dietary Cu at 20 °C and 32 °C. Transcriptional and enzymatic responses of various indicators of metabolic capacities as well as indicators of heat, oxidative and metal stresses were measured in fish muscle. Under our experimental conditions, temperature was the most important factor affecting the general condition of fish. Although no significant Cu accumulation was observed in the muscle of Cu-exposed fish, at 20 °C, waterborne and dietary Cu triggered significant changes in the transcription level of genes encoding for proteins involved in energy metabolism, metal detoxification and protein protection. Moreover, the response was quantitatively more important for dietary Cu than for waterborne Cu. Combined exposure to heat and Cu triggered the most significant changes in gene transcription levels and enzyme activities. During combined exposure to heat and Cu, in addition to synergistic effects of the two factors, both waterborne and dietary Cu impaired the adaptive response developed by fish to curb heat stress. Reciprocally, temperature impaired the adaptive response developed by fish to combat Cu toxicity. These results suggest that wild fish populations subjected to elevated temperatures due to seasonal warming or global climate change may become more susceptible to Cu pollution, and vice versa.


Subject(s)
Copper/toxicity , Cyprinidae/physiology , Heat-Shock Response , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Catalase/genetics , Catalase/metabolism , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Cyprinidae/genetics , Cyprinidae/metabolism , Diet , Dose-Response Relationship, Drug , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Gene Expression/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Metallothionein/genetics , Metallothionein/metabolism , Nucleoside-Diphosphate Kinase/genetics , Nucleoside-Diphosphate Kinase/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
9.
Environ Toxicol Chem ; 30(1): 132-41, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20853449

ABSTRACT

The aim of the current study was to investigate effects of temperature and a mixture of herbicides on the physiological status of the bivalve Mya arenaria. Bivalves acclimated to two temperatures (7 and 18°C) were exposed for 28 d to 0.01 mg/L of a pesticide formulation containing dichlorophenoxyacetic acid (2,4-D), 2-(2-methyl-4-chlorophenoxy) propionic acid (mecoprop), and 3,6-dichloro-2-methoxybenzoic acid (dicamba). At days 7, 14, and 28, mortality, immune parameters (hemocyte number, phagocytic activity, and efficiency), biomarkers of oxidative stress (catalase [CAT] and superoxide dismutase [SOD] activities and malondialdehyde [MDA] content), the metabolic enzyme cytochrome C oxidase (CCO), a biomarker of pesticide exposure (acetylcholinesterase [AChE]), and the activity of an enzyme related to gametogenesis (aspartate transcarbamylase [ATCase]) were monitored in clam tissues. Gonadosomatic index (GSI), condition factor (CF), and sex were also assessed. In clams acclimated to 7°C, exposure to pesticide enhanced CCO activity and CF and decreased MDA content, hemocyte number, CAT, and SOD activities. In clams kept at 18°C, pesticide effects appeared minor compared with samples kept at 7°C. In bivalves acclimated to 18°C, CCO, SOD, and ATCase activity and MDA content were enhanced, and hemocyte number, CAT, and AchE activities and phagocytosis were suppressed. In samples exposed to pesticides, increased temperature enhanced MDA content and CCO and SOD activity and suppressed hemocyte number and CAT and AchE activity. A gradual sexual maturation was observed in both sexes through experimental time, but females had a higher sensitivity to temperature and pesticides compared to males. Increased temperature altered the ability of the sentinel species Mya arenaria to respond to pesticide exposures. Further work is needed to understand the impacts of increasing temperature on the whole St. Lawrence estuary ecosystem.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/toxicity , 2-Methyl-4-chlorophenoxyacetic Acid/analogs & derivatives , Dicamba/toxicity , Mya/physiology , Temperature , Water Pollutants, Chemical/toxicity , 2-Methyl-4-chlorophenoxyacetic Acid/toxicity , Acetylcholinesterase/metabolism , Animals , Biomarkers/metabolism , Catalase/metabolism , Dose-Response Relationship, Drug , Drug Combinations , Electron Transport Complex IV/metabolism , Female , Fresh Water/chemistry , Male , Malondialdehyde/metabolism , Mya/drug effects , Mya/metabolism , Oxidative Stress , Seawater/chemistry , Superoxide Dismutase/metabolism
10.
Ecotoxicol Environ Saf ; 73(4): 572-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20116852

ABSTRACT

Early-life stages of fathead minnows were exposed to environmentally relevant concentrations of aqueous and dietary nickel and thallium and metal accumulation was monitored from the embryo until the larvae reached 21 days after hatching. During and after metal exposure, 6 toxicity endpoints were measured: time to hatch, embryo survival rate, routine metabolic rate and the activity of key enzymes (lactate dehydrogenase, nucleoside diphosphate kinase (NDPK), cytochrome C oxidase (CCO)). Although both Ni and Tl bioaccumulation were significant in embryos and non-feeding larvae, water was the major source of Ni and Tl in feeding larvae. Exposure to aqueous Ni decreased time to hatch and increased aerobic and biosynthetic capacities (as indicated by a higher activity of CCO and NDPK, respectively), suggesting that aqueous Ni exposure stimulates metabolism in early-life stages of fathead minnows.


Subject(s)
Cyprinidae/growth & development , Nickel/metabolism , Thallium/metabolism , Water Pollutants, Chemical/metabolism , Animals , Cyprinidae/metabolism , Electron Transport Complex IV/analysis , Electron Transport Complex IV/metabolism , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , L-Lactate Dehydrogenase/analysis , L-Lactate Dehydrogenase/metabolism , Nickel/analysis , Nickel/toxicity , Nucleoside-Diphosphate Kinase/analysis , Nucleoside-Diphosphate Kinase/metabolism , Thallium/analysis , Thallium/toxicity , Water/analysis , Water Pollutants, Chemical/analysis
11.
Environ Sci Technol ; 43(22): 8665-70, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-20028068

ABSTRACT

Because fish take up metals from prey, it is important to measure factors controlling metal transfer between these trophic levels so as to explain metal bioaccumulation and effects in fish. To achieve this, we exposed two types of invertebrates, an oligochaete (Tubifex tubifex) and a crustacean (Daphnia magna), to environmentally relevant concentrations of two important contaminants, nickel (Ni) and thallium (Tl), and fed these prey to juvenile fathead minnows (Pimephales promelas). We then measured the assimilation efficiency (AE), subcellular distribution and effects of these metals in fish. Fish assimilated dietary Tl more efficiently from D. magna than from T. tubifex, and more efficiently than Ni, regardless of prey type. However, the proportion of metal bound to prey subcellular fractions that are likely to be trophically available (TAM) had no significant influence on the efficiency with which fish assimilated Ni or Tl. In fish, the majority of their Ni and Tl was bound to subcellular fractions that are purportedly detoxified, and prey type had a significant influence on the proportion of detoxified Ni and Tl in fish. We measured higher activities of cytochrome C oxidase and glutathione S-transferase in fish fed D. magna compared to fish fed T. tubifex, regardless of the presence or absence of Ni or Tl in prey. However, we measured decreased activities of glutathione S-transferase and nucleoside diphosphate kinase in fish fed Tl-contaminated D. magna compared to fish from the three other treatment levels.


Subject(s)
Cyprinidae/physiology , Nickel/metabolism , Thallium/metabolism , Water Pollutants/metabolism , Animal Feed , Animals , Daphnia , Food Chain , Oligochaeta , Predatory Behavior
12.
Arch Environ Contam Toxicol ; 57(3): 571-80, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19253010

ABSTRACT

In this study, we examine the relative contribution of water and live prey (Tubifex tubifex) as sources of nickel (Ni) and thallium (Tl) in juvenile fathead minnows (Pimephales promelas). Overall, both water and prey were important sources of metals for our fish, although only approximately 35% of the metal estimated available for trophic transfer in the prey was assimilated. We also investigated the influence of exposure route on the subcellular distribution of these two metals. Once assimilated, most of the Ni was found in the granules, debris, and heat-stable protein (HSP), regardless of the route of exposure. Thallium was also mostly located in granules, debris, and HSP, and fish exposed from both water and prey had a higher proportion of Tl bound to the HSP compartment compared to control fish. Our results, obtained using environmentally relevant concentrations, suggest the presence of regulation mechanisms for both metals. Nevertheless, we measured increased metal concentrations in potentially metal-sensitive subcellular fractions when fish were exposed from water and diet simultaneously compared to a single route of exposure, suggesting that exposure to Ni and Tl from both routes could represent a risk of toxicity.


Subject(s)
Cyprinidae/metabolism , Environmental Exposure , Nickel/pharmacokinetics , Subcellular Fractions/metabolism , Thallium/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics , Animals , Annelida/metabolism , Biological Availability , Cyprinidae/growth & development , Diet , Environmental Exposure/analysis , Food Chain , Geologic Sediments/chemistry , Tissue Distribution
13.
J Comp Physiol B ; 177(4): 447-60, 2007 May.
Article in English | MEDLINE | ID: mdl-17279388

ABSTRACT

Atlantic cod populations live in a wide thermal range and can differ genetically and physiologically. Thermal sensitivity of metabolic capacity and swimming performance may vary along a latitudinal gradient, to facilitate performance in distinct thermal environments. To evaluate this hypothesis, we compared the thermal sensitivity of performance in two cod stocks from the Northwest Atlantic that differ in their thermal experience: Gulf of St Lawrence (GSL) and Bay of Fundy (BF). We first compared the metabolic, physiological and swimming performance after short-term thermal change to that at the acclimation temperature (7 degrees C) for one stock (GSL), before comparing the performance of the two stocks after short-term thermal change. For cod from GSL, standard metabolism (SMR) increased with temperature, while active metabolism (AMR, measured in the critical swimming tests), EMR (metabolic rate after an exhaustive chase protocol), aerobic scope (AS) and critical swimming speeds (U (crit) and U (b-c)) were lower at 3 degrees C than 7 or 11 degrees C. In contrast, anaerobic swimming (sprint and burst-coasts in U (crit) test) was lower at 11 than 7 or 3 degrees C. Factorial AS (AMR SMR(-1)) decreased as temperature rose. Time to exhaustion (chase protocol) was not influenced by temperature. The two stocks differed little in the thermal sensitivities of metabolism or swimming. GSL cod had a higher SMR than BF cod despite similar AMR and AS. This led factorial AS to be significantly higher for the southern stock. Despite these metabolic differences, cod from the two stocks did not differ in their U (crit) speeds. BF cod were better sprinters at both temperatures. Cod from GSL had a lower aerobic cost of swimming at intermediate speeds than those from BF, particularly at low temperature. Only the activity of cytochrome C oxidase (CCO) in white muscle differed between stocks. No enzymatic correlates were found for swimming capacities, but oxygen consumption was best correlated with CCO activity in the ventricle for both stocks. Overall, the stocks differed in their cost of maintenance, cost of transport and sprint capacity, while maintaining comparable thermal sensitivities.


Subject(s)
Body Temperature Regulation/physiology , Energy Metabolism/physiology , Gadus morhua/physiology , Swimming/physiology , Animals , Behavior, Animal/physiology , Cold Temperature , Oceans and Seas , Oxygen/metabolism , Physical Exertion/physiology
14.
Physiol Biochem Zool ; 79(1): 109-19, 2006.
Article in English | MEDLINE | ID: mdl-16380932

ABSTRACT

In the field, Atlantic cod face seasonal changes in food availability that in turn lead to changes in condition. To examine the physiological consequences of these changes in condition, we measured routine metabolic rate (RMR) to estimate standard metabolic rate (SMR), active metabolic rate (AMR), aerobic scope, critical swimming speed (Ucrit), cost of transport, sprint performance, time to exhaustion, and postexhaustion metabolic rate (EMR) for 24 Atlantic cod from the Gulf of St. Lawrence. Cod were measured at their initial condition (condition factor of 0.676+/-0.076) and after 9 wk of feeding (condition factor of 0.923+/-0.096). These levels of condition are representative of wild cod in the Gulf of St. Lawrence during the spring and during the fall-early winter, respectively. The improved condition did not change mass-specific SMR. However, mass-specific AMR, aerobic scope, and EMR decreased with the improvement in condition. The various measures of swimming performance were affected differently. Ucrit increased and cost of transport at 1.3 and 1.5 body lengths s(-1) decreased with improved condition, but the cost of transport at 0.3, 0.9, 1.1, 1.7, and 1.9 body lengths s(-1), sprint performance, and time to exhaustion did not change. Hierarchies for the speed at first burst-coast, the proportion of Ucrit supported by burst-coasts, and time to exhaustion were maintained with the improvement in condition. The relationships between metabolic rates and swimming performance differed with condition level, with stronger correlations apparent in the cod at their initial condition. Given the low condition of wild cod stocks, these responses indicate that reduced performance, due to both maintenance of metabolic expenditures and modified swimming capacities, may impair survival under conditions of reduced food availability.


Subject(s)
Energy Metabolism/physiology , Gadus morhua/metabolism , Motor Activity/physiology , Swimming/physiology , Animals , Body Weight
15.
Article in English | MEDLINE | ID: mdl-12781835

ABSTRACT

Atlantic cod, Gadus morhua, respond to starvation first by mobilising hepatic lipids, then muscle and hepatic glycogen and finally muscle proteins. The dual role of proteins as functional elements and energetic reserves should lead to a temporal hierarchy of mobilisation where the nature of a function dictates its conservation during starvation. We examined (1) whether lysosomal and anti-oxidant enzymes in liver and white muscle are spared during prolonged starvation, (2) whether the responses of these enzymes in muscle vary longitudinally. Hepatic contents of lysosomal proteases decreased with starvation, whereas those of catalase (CAT) increased and lysosomal enzymes of carbohydrate metabolism and glutathione S-transferase (GST) did not change. In white muscle, starvation decreased the specific activity of lysosomal enzymes of carbohydrate degradation and doubled that of cathepsin D (CaD). The activity of anti-oxidant enzymes and acid phosphatase in muscle was unchanged with starvation. In white muscle neither lysosomal enzymes nor anti-oxidant enzymes varied significantly with sampling position. In cod muscle, antioxidant enzymes, CaD and acid phosphatase are spared during a period of starvation that decreases lysosomal enzymes of carbohydrate metabolism and decreases glycolytic enzyme activities. In cod liver, the anti-oxidant enzymes, CAT and GST, were also spared during starvation.


Subject(s)
Fishes/metabolism , Starvation/metabolism , Animals , Eating , Fishes/anatomy & histology , Liver/anatomy & histology , Liver/enzymology , Lysosomes/enzymology , Muscle, Skeletal/enzymology , Organ Size , Seawater , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...