Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
J Neuromuscul Dis ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38701156

ABSTRACT

Medical acts, such as imaging, lead to the production of various medical text reports that describe the relevant findings. This induces multimodality in patient data by combining image data with free-text and consequently, multimodal data have become central to drive research and improve diagnoses. However, the exploitation of patient data is problematic as the ecosystem of analysis tools is fragmented according to the type of data (images, text, genetics), the task (processing, exploration) and domain of interest (clinical phenotype, histology). To address the challenges, we developed IMPatienT (Integrated digital Multimodal PATIENt daTa), a simple, flexible and open-source web application to digitize, process and explore multimodal patient data. IMPatienT has a modular architecture allowing to: (i) create a standard vocabulary for a domain, (ii) digitize and process free-text data, (iii) annotate images and perform image segmentation, (iv) generate a visualization dashboard and provide diagnosis decision support. To demonstrate the advantages of IMPatienT, we present a use case on a corpus of 40 simulated muscle biopsy reports of congenital myopathy patients. As IMPatienT provides users with the ability to design their own vocabulary, it can be adapted to any research domain and can be used as a patient registry for exploratory data analysis. A demo instance of the application is available at https://impatient.lbgi.fr/.

2.
Skelet Muscle ; 14(1): 9, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702726

ABSTRACT

BACKGROUND: Adeno-associated virus (AAV)-based gene therapy is a promising strategy to treat muscle diseases. However, this strategy is currently confronted with challenges, including a lack of transduction efficiency across the entire muscular system and toxicity resulting from off-target tissue effects. Recently, novel myotropic AAVs named MyoAAVs and AAVMYOs have been discovered using a directed evolution approach, all separately demonstrating enhanced muscle transduction efficiency and liver de-targeting effects. However, these newly discovered AAV variants have not yet been compared. METHODS: In this study, we performed a comparative analysis of these various AAV9-derived vectors under the same experimental conditions following different injection time points in two distinct mouse strains. RESULTS: We highlight differences in transduction efficiency between AAV9, AAVMYO, MyoAAV2A and MyoAAV4A that depend on age at injection, doses and mouse genetic background. In addition, specific AAV serotypes appeared more potent to transduce skeletal muscles including diaphragm and/or to de-target heart or liver. CONCLUSIONS: Our study provides guidance for researchers aiming to establish proof-of-concept approaches for preventive or curative perspectives in mouse models, to ultimately lead to future clinical trials for muscle disorders.


Subject(s)
Dependovirus , Genetic Therapy , Genetic Vectors , Mice, Inbred C57BL , Muscle, Skeletal , Transduction, Genetic , Animals , Dependovirus/genetics , Genetic Vectors/administration & dosage , Muscle, Skeletal/metabolism , Mice , Transduction, Genetic/methods , Genetic Therapy/methods , Male , Liver/metabolism , Mice, Inbred mdx
3.
Commun Biol ; 7(1): 549, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724689

ABSTRACT

Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.


Subject(s)
Actins , Adaptor Proteins, Signal Transducing , Nerve Tissue Proteins , Pseudopodia , Tumor Suppressor Proteins , Pseudopodia/metabolism , Actins/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cell Membrane/metabolism , Mice , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
4.
JCI Insight ; 9(6)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38516893

ABSTRACT

Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) are clinically overlapping disorders characterized by childhood-onset muscle weakness and a variable occurrence of multisystemic signs, including short stature, thrombocytopenia, and hyposplenism. TAM/STRMK is caused by gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1, both of which regulate Ca2+ homeostasis through the ubiquitous store-operated Ca2+ entry (SOCE) mechanism. Functional experiments in cells have demonstrated that the TAM/STRMK mutations induce SOCE overactivation, resulting in excessive influx of extracellular Ca2+. There is currently no treatment for TAM/STRMK, but SOCE is amenable to manipulation. Here, we crossed Stim1R304W/+ mice harboring the most common TAM/STRMK mutation with Orai1R93W/+ mice carrying an ORAI1 mutation partially obstructing Ca2+ influx. Compared with Stim1R304W/+ littermates, Stim1R304W/+Orai1R93W/+ offspring showed a normalization of bone architecture, spleen histology, and muscle morphology; an increase of thrombocytes; and improved muscle contraction and relaxation kinetics. Accordingly, comparative RNA-Seq detected more than 1,200 dysregulated genes in Stim1R304W/+ muscle and revealed a major restoration of gene expression in Stim1R304W/+Orai1R93W/+ mice. Altogether, we provide physiological, morphological, functional, and molecular data highlighting the therapeutic potential of ORAI1 inhibition to rescue the multisystemic TAM/STRMK signs, and we identified myostatin as a promising biomarker for TAM/STRMK in humans and mice.


Subject(s)
Blood Platelet Disorders , Dyslexia , Ichthyosis , Migraine Disorders , Myopathies, Structural, Congenital , ORAI1 Protein , Spleen , Animals , Mice , Calcium/metabolism , Erythrocytes, Abnormal , Migraine Disorders/drug therapy , Miosis/drug therapy , Miosis/genetics , Miosis/metabolism , Muscle Fatigue , Myopathies, Structural, Congenital/drug therapy , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Spleen/metabolism , Spleen/abnormalities
5.
Trends Mol Med ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38514365

ABSTRACT

Amphiphysin-2 is a ubiquitously expressed protein also known as bridging integrator 1 (BIN1), playing a critical role in membrane remodeling, trafficking, and cytoskeleton dynamics in a wide range of tissues. Mutations in the gene encoding BIN1 cause centronuclear myopathies (CNM), and recent evidence has implicated BIN1 in heart failure, underlining its crucial role in both skeletal and cardiac muscle. Furthermore, altered expression of BIN1 is linked to an increased risk of late-onset Alzheimer's disease and several types of cancer, including breast, colon, prostate, and lung cancers. Recently, the first proof-of-concept for potential therapeutic strategies modulating BIN1 were obtained for muscle diseases. In this review article, we discuss the similarities and differences in BIN1's functions in cardiac and skeletal muscle, along with its associated diseases and potential therapies.

7.
Sci Rep ; 14(1): 445, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172607

ABSTRACT

Kohlschütter-Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by severe intellectual disability, early-onset epileptic seizures, and amelogenesis imperfecta. Here, we present a novel Rogdi mutant mouse deleting exons 6-11- a mutation found in KTS patients disabling ROGDI function. This Rogdi-/- mutant model recapitulates most KTS symptoms. Mutants displayed pentylenetetrazol-induced seizures, confirming epilepsy susceptibility. Spontaneous locomotion and circadian activity tests demonstrate Rogdi mutant hyperactivity mirroring patient spasticity. Object recognition impairment indicates memory deficits. Rogdi-/- mutant enamel was markedly less mature. Scanning electron microscopy confirmed its hypomineralized/hypomature crystallization, as well as its low mineral content. Transcriptomic RNA sequencing of postnatal day 5 lower incisors showed downregulated enamel matrix proteins Enam, Amelx, and Ambn. Enamel crystallization appears highly pH-dependent, cycling between an acidic and neutral pH during enamel maturation. Rogdi-/- teeth exhibit no signs of cyclic dental acidification. Additionally, expression changes in Wdr72, Slc9a3r2, and Atp6v0c were identified as potential contributors to these tooth acidification abnormalities. These proteins interact through the acidifying V-ATPase complex. Here, we present the Rogdi-/- mutant as a novel model to partially decipher KTS pathophysiology. Rogdi-/- mutant defects in acidification might explain the unusual combination of enamel and rare neurological disease symptoms.


Subject(s)
Amelogenesis Imperfecta , Dementia , Epilepsy , Tooth Abnormalities , Humans , Animals , Mice , Amelogenesis Imperfecta/genetics , Seizures , Mutation , Membrane Proteins/genetics , Nuclear Proteins/genetics
8.
Hum Mol Genet ; 33(3): 254-269, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-37930228

ABSTRACT

CACNA1S-related myopathy, due to pathogenic variants in the CACNA1S gene, is a recently described congenital muscle disease. Disease associated variants result in loss of gene expression and/or reduction of Cav1.1 protein stability. There is an incomplete understanding of the underlying disease pathomechanisms and no effective therapies are currently available. A barrier to the study of this myopathy is the lack of a suitable animal model that phenocopies key aspects of the disease. To address this barrier, we generated knockouts of the two zebrafish CACNA1S paralogs, cacna1sa and cacna1sb. Double knockout fish exhibit severe weakness and early death, and are characterized by the absence of Cav1.1 α1 subunit expression, abnormal triad structure, and impaired excitation-contraction coupling, thus mirroring the severe form of human CACNA1S-related myopathy. A double mutant (cacna1sa homozygous, cacna1sb heterozygote) exhibits normal development, but displays reduced body size, abnormal facial structure, and cores on muscle pathologic examination, thus phenocopying the mild form of human CACNA1S-related myopathy. In summary, we generated and characterized the first cacna1s zebrafish loss-of-function mutants, and show them to be faithful models of severe and mild forms of human CACNA1S-related myopathy suitable for future mechanistic studies and therapy development.


Subject(s)
Calcium Channels, L-Type , Muscular Diseases , Zebrafish Proteins , Zebrafish , Animals , Humans , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/pathology , Mutation , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism
9.
Neuropathol Appl Neurobiol ; : e12952, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38124360

ABSTRACT

AIMS: Limb-girdle congenital myasthenic syndrome (LG-CMS) is a genetically heterogeneous disorder characterized by muscle weakness and fatigability. The LG-CMS gene DPAGT1 codes for an essential enzyme of the glycosylation pathway, a posttranslational modification mechanism shaping the structure and function of proteins. In DPAGT1-related LG-CMS, reduced glycosylation of the acetylcholine receptor (AChR) reduces its localization at the neuromuscular junction (NMJ), and results in diminished neuromuscular transmission. LG-CMS patients also show tubular aggregates on muscle biopsy, but the origin and potential contribution of the aggregates to disease development are not understood. Here, we describe two LG-CMS patients with the aim of providing a molecular diagnosis and to shed light on the pathways implicated in tubular aggregate formation. METHODS: Following clinical examination of the patients, we performed next-generation sequencing (NGS) to identify the genetic causes, analysed the biopsies at the histological and ultrastructural levels, investigated the composition of the tubular aggregates, and performed experiments on protein glycosylation. RESULTS: We identified novel pathogenic DPAGT1 variants in both patients, and pyridostigmine treatment quantitatively improved muscle force and function. The tubular aggregates contained proteins of the sarcoplasmic reticulum (SR) and structurally conformed to the aggregates observed in tubular aggregate myopathy (TAM). TAM arises from overactivation of the plasma membrane calcium channel ORAI1, and functional studies on muscle extracts from our LG-CMS patients evidenced abnormal ORAI1 glycosylation. CONCLUSIONS: We expand the genetic variant spectrum of LG-CMS and provide a genotype/phenotype correlation for pathogenic DPAGT1 variants. The discovery of ORAI1 hypoglycosylation in our patients highlights a physiopathological link between LG-CMS and TAM.

10.
Med Sci (Paris) ; 39 Hors série n° 1: 32-36, 2023 Nov.
Article in French | MEDLINE | ID: mdl-37975768

ABSTRACT

Myotubular myopathy is a rare disease of genetic origin characterized by significant muscle weakness leading to respiratory disorders and for which no treatment exists today. In this paper, we show that inhibition of the activity of the enzyme PI3KC2ß prevents the development of this myopathy in a mouse model of the disease, thus identifying a therapeutic target to treat myotubular myopathy in humans.


Title: Une cible thérapeutique prometteuse dans la myopathie myotubulaire. Abstract: La myopathie myotubulaire est une maladie rare d'origine génétique caractérisée par une importante faiblesse musculaire entraînant des troubles respiratoires et pour laquelle aucun traitement n'existe aujourd'hui. Dans cet article, nous montrons que l'inhibition de l'activité de l'enzyme PI3KC2ß prévient le développement de cette myopathie dans un modèle murin de la maladie, identifiant ainsi une cible thérapeutique pour traiter la myopathie myotubulaire chez l'homme.


Subject(s)
Myopathies, Structural, Congenital , Animals , Mice , Disease Models, Animal , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy , Protein Tyrosine Phosphatases, Non-Receptor/genetics
11.
Mol Ther Nucleic Acids ; 33: 321-334, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37547294

ABSTRACT

Dynamin 2 (DNM2) is a ubiquitously expressed GTPase regulating membrane trafficking and cytoskeleton dynamics. Heterozygous dominant mutations in DNM2 cause centronuclear myopathy (CNM), associated with muscle weakness and atrophy and histopathological hallmarks as fiber hypotrophy and organelles mis-position. Different severities range from the severe neonatal onset form to the moderate form with childhood onset and to the mild adult onset form. No therapy is approved for CNM. Here we aimed to validate and rescue a mouse model for the moderate form of DNM2-CNM harboring the common DNM2 R369W missense mutation. Dnm2R369W/+ mice presented with increased DNM2 protein level in muscle and moderate CNM-like phenotypes with force deficit, muscle and fiber hypotrophy, impaired mTOR signaling, and progressive mitochondria and nuclei mis-position with age. Molecular analyses revealed a fiber type switch toward oxidative metabolism correlating with decreased force and alteration of mitophagy markers paralleling mitochondria structural defects. Normalization of DNM2 levels through intramuscular injection of AAV-shDnm2 targeting Dnm2 mRNA significantly improved histopathology and muscle and myofiber hypotrophy. These results showed that the Dnm2R369W/+ mouse is a faithful model for the moderate form of DNM2-CNM and revealed that DNM2 normalization after a short 4-week treatment is sufficient to improve the CNM phenotypes.

12.
Brain ; 146(10): 4158-4173, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37490306

ABSTRACT

Centronuclear and myotubular myopathies (CNM) are rare and severe genetic diseases associated with muscle weakness and atrophy as well as intracellular disorganization of myofibres. The main mutated proteins control lipid and membrane dynamics and are the lipid phosphatase myotubularin (MTM1), and the membrane remodelling proteins amphiphysin 2 (BIN1) and dynamin 2 (DNM2). There is no available therapy. Here, to validate a novel therapeutic strategy for BIN1- and DNM2-CNM, we evaluated adeno-associated virus-mediated MTM1 (AAV-MTM1 ) overexpression in relevant mouse models. Early systemic MTM1 overexpression prevented the development of the CNM pathology in Bin1mck-/- mice, while late intramuscular MTM1 expression partially reverted the established phenotypes after only 4 weeks of treatment. However, AAV-MTM1 injection did not change the DNM2-CNM mouse phenotypes. We investigated the mechanism of the rescue of the myopathy in BIN1-CNM and found that the lipid phosphatase activity of MTM1 was essential for the rescue of muscle atrophy and myofibre hypotrophy but dispensable for the rescue of myofibre disorganization including organelle mis-position and T-tubule defects. Furthermore, the improvement of T-tubule organization correlated with normalization of key regulators of T-tubule morphogenesis, dysferlin and caveolin. Overall, these data support the inclusion of BIN1-CNM patients in an AAV-MTM1 clinical trial.


Subject(s)
Muscle, Skeletal , Myopathies, Structural, Congenital , Protein Tyrosine Phosphatases, Non-Receptor , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Dynamin II/genetics , Dynamin II/metabolism , Lipids , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Mutation , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy , Nuclear Proteins/genetics , Phenotype , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Genetic Therapy
13.
Circ Res ; 132(11): e188-e205, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37139790

ABSTRACT

BACKGROUND: Transverse tubules (t-tubules) form gradually in the developing heart, critically enabling maturation of cardiomyocyte Ca2+ homeostasis. The membrane bending and scaffolding protein BIN1 (bridging integrator 1) has been implicated in this process. However, it is unclear which of the various reported BIN1 isoforms are involved, and whether BIN1 function is regulated by its putative binding partners MTM1 (myotubularin), a phosphoinositide 3'-phosphatase, and DNM2 (dynamin-2), a GTPase believed to mediate membrane fission. METHODS: We investigated the roles of BIN1, MTM1, and DNM2 in t-tubule formation in developing mouse cardiomyocytes, and in gene-modified HL-1 and human-induced pluripotent stem cell-derived cardiomyocytes. T-tubules and proteins of interest were imaged by confocal and Airyscan microscopy, and expression patterns were examined by RT-qPCR and Western blotting. Ca2+ release was recorded using Fluo-4. RESULTS: We observed that in the postnatal mouse heart, BIN1 localizes along Z-lines from early developmental stages, consistent with roles in initial budding and scaffolding of t-tubules. T-tubule proliferation and organization were linked to a progressive and parallel increase in 4 detected BIN1 isoforms. All isoforms were observed to induce tubulation in cardiomyocytes but produced t-tubules with differing geometries. BIN1-induced tubulations contained the L-type Ca2+ channel, were colocalized with caveolin-3 and the ryanodine receptor, and effectively triggered Ca2+ release. BIN1 upregulation during development was paralleled by increasing expression of MTM1. Despite no direct binding between MTM1 and murine cardiac BIN1 isoforms, which lack exon 11, high MTM1 levels were necessary for BIN1-induced tubulation, indicating a central role of phosphoinositide homeostasis. In contrast, the developing heart exhibited declining levels of DNM2. Indeed, we observed that high levels of DNM2 are inhibitory for t-tubule formation, although this protein colocalizes with BIN1 along Z-lines, and binds all 4 isoforms. CONCLUSIONS: These findings indicate that BIN1, MTM1, and DNM2 have balanced and collaborative roles in controlling t-tubule growth in cardiomyocytes.


Subject(s)
Dynamin II , Myocytes, Cardiac , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Dynamin II/genetics , Dynamin II/metabolism , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Protein Isoforms/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Tumor Suppressor Proteins/metabolism
14.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-36943412

ABSTRACT

Phosphoinositides (PIs) are membrane lipids that regulate signal transduction and vesicular trafficking. X-linked centronuclear myopathy (XLCNM), also called myotubular myopathy, results from loss-of-function mutations in the MTM1 gene, which encodes the myotubularin phosphatidylinositol 3-phosphate (PtdIns3P) lipid phosphatase. No therapy for this disease is currently available. Previous studies showed that loss of expression of the class II phosphoinositide 3-kinase (PI3K) PI3KC2ß (PI3KC2B) protein improved the phenotypes of an XLCNM mouse model. PI3Ks are well known to have extensive scaffolding functions and the importance of the catalytic activity of this PI3K for rescue remains unclear. Here, using PI3KC2ß kinase-dead mice, we show that the selective inactivation of PI3KC2ß kinase activity is sufficient to fully prevent muscle atrophy and weakness, histopathology, and sarcomere and triad disorganization in Mtm1-knockout mice. This rescue correlates with normalization of PtdIns3P level and mTORC1 activity, a key regulator of protein synthesis and autophagy. Conversely, lack of PI3KC2ß kinase activity did not rescue the histopathology of the BIN1 autosomal CNM mouse model. Overall, these findings support the development of specific PI3KC2ß kinase inhibitors to cure myotubular myopathy.


Subject(s)
Myopathies, Structural, Congenital , Phosphatidylinositol 3-Kinases , Animals , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositols , Mutation , Mice, Knockout , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology
15.
Curr Opin Pharmacol ; 68: 102328, 2023 02.
Article in English | MEDLINE | ID: mdl-36512981

ABSTRACT

Congenital myopathies are rare and severe genetic diseases affecting the skeletal muscle function in children and adults. They present a variable spectrum of phenotypes and a genetic heterogeneity. Subgroups are defined according to the clinical and histopathological features and encompass core myopathy, centronuclear myopathy, nemaline myopathy and other rare congenital myopathies. No approved treatment exists to date for any congenital myopathies. To tackle this important unmet need, an increased number of proof-of-concept studies recently assessed the therapeutic potential of various strategies, either pharmacological or genetic-based, aiming at counteracting muscle weakness or/and cure the pathology. Here, we list the implicated genes and cellular pathways, and review the therapeutic approaches preclinically tested and the ongoing/completed clinical trials for the different types of congenital myopathies.


Subject(s)
Muscle, Skeletal , Myopathies, Structural, Congenital , Humans , Muscle, Skeletal/pathology , Myopathies, Structural, Congenital/drug therapy , Myopathies, Structural, Congenital/genetics , Phenotype , Mutation
16.
Brain ; 146(7): 3029-3048, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36562127

ABSTRACT

Congenital myopathies define a genetically heterogeneous group of disorders associated with severe muscle weakness, for which no therapies are currently available. Here we investigated the repurposing of tamoxifen in mouse models of mild or severe forms of centronuclear myopathies due to mutations in BIN1 (encoding amphiphysin 2) or DNM2 (encoding dynamin 2), respectively. Exposure to a tamoxifen-enriched diet from 3 weeks of age resulted in significant improvement in muscle contractility without increase in fibre size in both models, underlying an increase in the capacity of the muscle fibres to produce more force. In addition, the histological alterations were fully rescued in the BIN1-centronuclear myopathies mouse model. To assess the mechanism of the rescue, transcriptome analyses and targeted protein studies were performed. Although tamoxifen is known to modulate the transcriptional activity of the oestrogen receptors, correction of the disease transcriptomic signature was marginal on tamoxifen treatment. Conversely, tamoxifen lowered the abnormal increase in dynamin 2 protein level in both centronuclear myopathies models. Of note, it was previously reported that dynamin 2 increase is a main pathological cause of centronuclear myopathies. The Akt/mTOR muscle hypertrophic pathway and protein markers of the ubiquitin-proteasome system (the E3 ubiquitin ligase cullin 3) and autophagy (p62) were increased in both models of centronuclear myopathies. Normalization of dynamin 2 level mainly correlated with the normalization of cullin 3 protein level on tamoxifen treatment, supporting the idea that the ubiquitin-proteasome system is a main target for the tamoxifen effect in the amelioration of these diseases. Overall, our data suggest that tamoxifen antagonizes disease development probably through dynamin 2 level regulation. In conclusion, the beneficial effect of tamoxifen on muscle function supports the suggestion that tamoxifen may serve as a common therapy for several autosomal forms of centronuclear myopathies.


Subject(s)
Dynamin II , Myopathies, Structural, Congenital , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Cullin Proteins/genetics , Cullin Proteins/metabolism , Dynamin II/genetics , Dynamin II/metabolism , Muscle, Skeletal/pathology , Muscles/metabolism , Muscles/pathology , Mutation , Myopathies, Structural, Congenital/drug therapy , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology , Nerve Tissue Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Tumor Suppressor Proteins/genetics , Ubiquitins/genetics , Ubiquitins/metabolism
17.
Nat Commun ; 13(1): 6849, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369230

ABSTRACT

Dynamin 2 mechanoenzyme is a key regulator of membrane remodeling and gain-of-function mutations in its gene cause centronuclear myopathies. Here, we investigate the functions of dynamin 2 isoforms and their associated phenotypes and, specifically, the ubiquitous and muscle-specific dynamin 2 isoforms expressed in skeletal muscle. In cell-based assays, we show that a centronuclear myopathy-related mutation in the ubiquitous but not the muscle-specific dynamin 2 isoform causes increased membrane fission. In vivo, overexpressing the ubiquitous dynamin 2 isoform correlates with severe forms of centronuclear myopathy, while overexpressing the muscle-specific isoform leads to hallmarks seen in milder cases of the disease. Previous mouse studies suggested that reduction of the total dynamin 2 pool could be therapeutic for centronuclear myopathies. Here, dynamin 2 splice switching from muscle-specific to ubiquitous dynamin 2 aggravated the phenotype of a severe X-linked form of centronuclear myopathy caused by loss-of-function of the MTM1 phosphatase, supporting the importance of targeting the ubiquitous isoform for efficient therapy in muscle. Our results highlight that the ubiquitous and not the muscle-specific dynamin 2 isoform is the main modifier contributing to centronuclear myopathy pathology.


Subject(s)
Dynamin II , Myopathies, Structural, Congenital , Animals , Mice , Dynamin II/genetics , Muscle, Skeletal/pathology , Mutation , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology , Phenotype , Protein Isoforms/genetics
18.
Hum Mutat ; 43(12): 1745-1756, 2022 12.
Article in English | MEDLINE | ID: mdl-36116040

ABSTRACT

ACTN2 encodes alpha-actinin-2, a protein expressed in human cardiac and skeletal muscle. The protein, located in the sarcomere Z-disk, functions as a link between the anti-parallel actin filaments. This important structural protein also binds N-terminal titins, and thus contributes to sarcomere stability. Previously, ACTN2 mutations have been solely associated with cardiomyopathy, without skeletal muscle disease. Recently, however, ACTN2 mutations have been associated with novel congenital and distal myopathy. Previously reported variants are in varying locations across the gene, but the potential clustering effect of pathogenic locations is not clearly understood. Further, the genotype-phenotype correlations of these variants remain unclear. Here we review the previously reported ACTN2-related molecular and clinical findings and present an additional variant, c.1840-2A>T, that further expands the mutation and phenotypic spectrum. Our results show a growing body of clinical, genetic, and functional evidence, which underlines the central role of ACTN2 in the muscle tissue and myopathy. However, limited segregation and functional data are available to support the pathogenicity of most previously reported missense variants and clear-cut genotype-phenotype correlations are currently only demonstrated for some ACTN2-related myopathies.


Subject(s)
Actinin , Heart , Humans , Actinin/genetics , Actinin/chemistry , Mutation , Muscle, Skeletal/metabolism , Mutation, Missense
19.
Proc Natl Acad Sci U S A ; 119(40): e2202236119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161941

ABSTRACT

X-linked centronuclear myopathy (XLCNM) is a severe human disease without existing therapies caused by mutations in the phosphoinositide 3-phosphatase MTM1. Loss of MTM1 function is associated with muscle fiber defects characterized by impaired localization of ß-integrins and other components of focal adhesions. Here we show that defective focal adhesions and reduced active ß-integrin surface levels in a cellular model of XLCNM are rescued by loss of phosphatidylinositiol 3-kinase C2ß (PI3KC2ß) function. Inactivation of the Mtm1 gene impaired myoblast differentiation into myotubes and resulted in reduced surface levels of active ß1-integrins as well as corresponding defects in focal adhesions. These phenotypes were rescued by concomitant genetic loss of Pik3c2b or pharmacological inhibition of PI3KC2ß activity. We further demonstrate that a hitherto unknown role of PI3KC2ß in the endocytic trafficking of active ß1-integrins rather than rescue of phosphatidylinositol 3-phosphate levels underlies the ability of Pik3c2b to act as a genetic modifier of cellular XLCNM phenotypes. Our findings reveal a crucial antagonistic function of MTM1 and PI3KC2ß in the control of active ß-integrin surface levels, thereby providing a molecular mechanism for the adhesion and myofiber defects observed in XLCNM. They further suggest specific pharmacological inhibition of PI3KC2ß catalysis as a viable treatment option for XLCNM patients.


Subject(s)
Myopathies, Structural, Congenital , Phosphatidylinositol 3-Kinase , Humans , Integrins/genetics , Muscle, Skeletal , Myopathies, Structural, Congenital/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics
20.
Acta Neuropathol Commun ; 10(1): 101, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810298

ABSTRACT

Nemaline myopathy (NM) is a muscle disorder with broad clinical and genetic heterogeneity. The clinical presentation of affected individuals ranges from severe perinatal muscle weakness to milder childhood-onset forms, and the disease course and prognosis depends on the gene and mutation type. To date, 14 causative genes have been identified, and ACTA1 accounts for more than half of the severe NM cases. ACTA1 encodes α-actin, one of the principal components of the contractile units in skeletal muscle. We established a homogenous cohort of ten unreported families with severe NM, and we provide clinical, genetic, histological, and ultrastructural data. The patients manifested antenatal or neonatal muscle weakness requiring permanent respiratory assistance, and most deceased within the first months of life. DNA sequencing identified known or novel ACTA1 mutations in all. Morphological analyses of the muscle biopsy specimens showed characteristic features of NM histopathology including cytoplasmic and intranuclear rods, cytoplasmic bodies, and major myofibrillar disorganization. We also detected structural anomalies of the perinuclear space, emphasizing a physiological contribution of skeletal muscle α-actin to nuclear shape. In-depth investigations of the nuclei confirmed an abnormal localization of lamin A/C, Nesprin-1, and Nesprin-2, forming the main constituents of the nuclear lamina and the LINC complex and ensuring nuclear envelope integrity. To validate the relevance of our findings, we examined muscle samples from three previously reported ACTA1 cases, and we identified the same set of structural aberrations. Moreover, we measured an increased expression of cardiac α-actin in the muscle samples from the patients with longer lifespan, indicating a potential compensatory effect. Overall, this study expands the genetic and morphological spectrum of severe ACTA1-related nemaline myopathy, improves molecular diagnosis, highlights the enlargement of the perinuclear space as an ultrastructural hallmark, and indicates a potential genotype/phenotype correlation.


Subject(s)
Myopathies, Nemaline , Actins/genetics , Actins/metabolism , Biopsy , Child , Female , Humans , Muscle Weakness/metabolism , Muscle, Skeletal/pathology , Mutation/genetics , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology , Nuclear Envelope/metabolism , Nuclear Envelope/pathology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...