Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(31): e2203530, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36065004

ABSTRACT

The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective "in-water" applications is developed. A combined experimental-theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10-2  S cm-1  under ambient conditions and 10-1  S cm-1  in vacuum. The modeling explains the stabilizing effects  for various dopants. The simulations show a significant doping-induced "collapse" of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.

2.
J Phys Chem B ; 125(22): 6004-6011, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34044535

ABSTRACT

The strong polycation poly(diallyldimethylammonium chloride) (PDADMAC) and the weak polyanion poly(ethylene-alt-maleic acid) (P(E-alt-MA)) were used to build polyelectrolyte multilayers (PEMs) up to 31 layers. A spin-label (SL) was covalently attached to the polyanion for studying the rotational dynamics of the polyacid backbone in a swollen state of the PEMs using continuous-wave (CW) electron paramagnetic resonance (EPR) spectroscopy. In the first step, the spin-labeled poly(ethylene-alt-maleic acid) (SL-P(E-alt-MA)) was used in every polyanion layer to monitor the PEMs growth by analyzing the integrated intensity of the spectra. The buildup was found to be pH-dependent resulting in PEM with different thicknesses. In the second step, SL-P(E-alt-MA) was selectively placed in a single polyanion layer to study the rotational dynamics of the polyacid backbone. The rotational diffusion coefficient of the polyacid backbone RS and the internal rotational diffusion coefficient of the SL attached to the polymer backbone RI were found to be higher at pH 5 than at pH 4, which is related to enhanced mobility.

3.
Adv Mater ; 30(31): e1801898, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29926985

ABSTRACT

The synthesis of a novel naphthalenediimide (NDI)-bithiazole (Tz2)-based polymer [P(NDI2OD-Tz2)] is reported, and structural, thin-film morphological, as well as charge transport and thermoelectric properties are compared to the parent and widely investigated NDI-bithiophene (T2) polymer [P(NDI2OD-T2)]. Since the steric repulsions in Tz2 are far lower than in T2, P(NDI2OD-Tz2) exhibits a more planar and rigid backbone, enhancing π-π chain stacking and intermolecular interactions. In addition, the electron-deficient nature of Tz2 enhances the polymer electron affinity, thus reducing the polymer donor-acceptor character. When n-doped with amines, P(NDI2OD-Tz2) achieves electrical conductivity (≈0.1 S cm-1 ) and a power factor (1.5 µW m-1 K-2 ) far greater than those of P(NDI2OD-T2) (0.003 S cm-1 and 0.012 µW m-1 K-2 , respectively). These results demonstrate that planarized NDI-based polymers with reduced donor-acceptor character can achieve substantial electrical conductivity and thermoelectric response.

4.
Chemistry ; 23(53): 13023-13027, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28727178

ABSTRACT

Donor-acceptor dyads hold the key to tuning of electrochemical properties and enhanced mobility of charge carriers, yet their incorporation into a heterogeneous polymer network proves difficulty owing to the fundamentally different chemistry of the donor and acceptor subunits. A family of sulfur- and nitrogen-containing porous polymers (SNPs) are obtained via Sonogashira-Hagihara cross-coupling and combine electron-withdrawing triazine (C3 N3 ) and electron-donating, sulfur-containing linkers. Choice of building blocks and synthetic conditions determines the optical band gap (from 1.67 to 2.58 eV) and nanoscale ordering of these microporous materials with BET surface areas of up to 545 m2 g-1 and CO2 capacities up to 1.56 mmol g-1 . Our results highlight the advantages of the modular design of SNPs, and one of the highest photocatalytic hydrogen evolution rates for a cross-linked polymer without Pt co-catalyst is attained (194 µmol h-1 g-1 ).

5.
Adv Mater ; 28(28): 6003-10, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27172371

ABSTRACT

[3]-Radialene-based dopant CN6-CP studied herein, with its reduction potential of +0.8 versus Fc/Fc+ and the lowest unoccupied molecular orbital level of -5.87 eV, is the strongest molecular p-dopant reported in the open literature, so far. The efficient p-doping of the donor-acceptor dithienyl-diketopyrrolopyrrole-based copolymer having the highest unoccupied molecular orbital level of -5.49 eV is achieved. The doped films exhibit electrical conductivities up to 70 S cm(-1) .

SELECTION OF CITATIONS
SEARCH DETAIL
...