Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 5(8): e1000611, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19696886

ABSTRACT

In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex.


Subject(s)
Caenorhabditis elegans/cytology , Meiosis , Spermatogenesis , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation, Developmental , Male , Spermatozoa/cytology , Spermatozoa/growth & development , Spermatozoa/metabolism
2.
J Biol Chem ; 279(48): 49940-7, 2004 Nov 26.
Article in English | MEDLINE | ID: mdl-15385549

ABSTRACT

Microtubules are dynamic polymers with central roles in the mitotic checkpoint, mitotic spindle assembly, and chromosome segregation. Agents that block mitotic progression and cell proliferation by interfering with microtubule dynamics (microtubule-targeted tubulin-polymerizing agents (MTPAs)) are powerful antitumor agents. Effects of MTPAs (e.g. paclitaxel) on microtubule dynamics have not yet been directly demonstrated in intact animals, however. Here we describe a method that measures microtubule dynamics as an exchange of tubulin dimers into microtubules in vivo. The incorporation of deuterium ((2)H(2)) from heavy water ((2)H(2)O) into tubulin dimers and polymers is measured by gas chromatography/mass spectrometry. In cultured human lung and breast cancer cell lines, or in tumors implanted into nude mice, tubulin dimers and polymerized microtubules exhibited nearly identical label incorporation rates, reflecting their rapid exchange. Administration of paclitaxel during 24 h of (2)H(2)O labeling in vivo reduced (2)H labeling in polymers while increasing (2)H in dimers, indicating diminished flux of dimers into polymers (i.e. inhibition of microtubule dynamic equilibrium). In vivo inhibition of microtubule dynamics was dose-dependent and correlated with inhibition of DNA replication, a stable isotopic measure of tumor cell growth. In contrast, microtubule polymers from sciatic nerve of untreated mice were not in dynamic equilibrium with tubulin dimers, and paclitaxel increased label incorporation into polymers. Our results directly demonstrate altered microtubule dynamics as an important action of MTPAs in vivo. This sensitive and quantitative in vivo assay of microtubule dynamics may prove useful for pre-clinical and clinical development of the next generation of MTPAs as anticancer drugs.


Subject(s)
Deuterium Oxide/metabolism , Microtubules/metabolism , Tubulin/metabolism , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Dimerization , Humans , Mice , Mice, Nude , Microtubules/drug effects , Neoplasms/drug therapy , Neoplasms/surgery , Paclitaxel/pharmacology , Tubulin/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...