Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(8)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38132557

ABSTRACT

Treatment of bone defects resulting after tumor surgeries, accidents, or non-unions is an actual problem linked to morbidity and the necessity of a second surgery and often requires a critical healthcare cost. Although the surgical technique has changed in a modern way, the treatment outcome is still influenced by patient age, localization of the bone defect, associated comorbidities, the surgeon approach, and systemic disorders. Three-dimensional magnesium-based scaffolds are considered an important step because they can have precise bone defect geometry, high porosity grade, anatomical pore shape, and mechanical properties close to the human bone. In addition, magnesium has been proven in in vitro and in vivo studies to influence bone regeneration and new blood vessel formation positively. In this review paper, we describe the magnesium alloy's effect on bone regenerative processes, starting with a short description of magnesium's role in the bone healing process, host immune response modulation, and finishing with the primary biological mechanism of magnesium ions in angiogenesis and osteogenesis by presenting a detailed analysis based on a literature review. A strategy that must be followed when a patient-adapted scaffold dedicated to bone tissue engineering is proposed and the main fabrication technologies are combined, in some cases with artificial intelligence for Mg alloy scaffolds, are presented with examples. We emphasized the microstructure, mechanical properties, corrosion behavior, and biocompatibility of each study and made a basis for the researchers who want to start to apply the regenerative potential of magnesium-based scaffolds in clinical practice. Challenges, future directions, and special potential clinical applications such as osteosarcoma and persistent infection treatment are present at the end of our review paper.

2.
Polymers (Basel) ; 15(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37376386

ABSTRACT

Additively manufactured wrist-hand orthoses (3DP-WHOs) offer several advantages over traditional splints and casts, but their development based on a patient's 3D scans currently requires advanced engineering skills, while also recording long manufacturing times as they are commonly built in a vertical position. A proposed alternative involves 3D printing the orthoses as a flat model base and then thermoforming them to fit the patient's forearm. This manufacturing approach is faster, cost-effective and allows easier integration of flexible sensors as an example. However, it is unknown whether these flat-shaped 3DP-WHOs offer similar mechanical resistance as the 3D-printed hand-shaped orthoses, with a lack of research in this area being revealed by the literature review. To evaluate the mechanical properties of 3DP-WHOs produced using the two approaches, three-point bending tests and flexural fatigue tests were conducted. The results showed that both types of orthoses had similar stiffness up to 50 N, but the vertically built orthoses failed at a maximum load of 120 N, while the thermoformed orthoses could withstand up to 300 N with no damages observed. The integrity of the thermoformed orthoses was maintained after 2000 cycles at 0.5 Hz and ±2.5 mm displacement. It was observed that the minimum force occurring during fatigue tests was approximately -95 N. After 1100-1200 cycles, it reached -110 N and remained constant. The outcomes of this study are expected to enhance the trust that hand therapists, orthopedists, and patients have in using thermoformable 3DP-WHOs.

3.
Proc Inst Mech Eng H ; 235(9): 1014-1024, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34176364

ABSTRACT

As standard practice in orthopedic surgery, the information gathered by analyzing Computer Tomography (CT) 2D images is used for patient diagnosis and planning surgery. Lately, these virtual slices are the input for generating 3D virtual models using DICOM viewers, facilitating spatial orientation, and diagnosis. Virtual Reality (VR) and 3D printing (3DP) technologies are also reported for use in anatomy visualization, medical training, and diagnosis. However, it has not been yet investigated whether the surgeons consider that the advantages offered by 3DP and VR outweigh their development efforts. Moreover, no comparative evaluation for understanding surgeon's preference in using these investigation tools has been performed so far. Therefore, in this paper, a pilot usability test was conducted for collecting surgeons' opinions. 3D models of knee, hip and foot were displayed using DICOM 3D viewer, two VR environments and as 3D-printed replicas. These tools adequacy for diagnosis was comparatively assessed in three cases scenarios, the time for completing the diagnosis tasks was recorded and questionnaires filled in. The time for preparing the models for VR and 3DP, the resources needed and the associated costs were presented in order to provide surgeons with the whole context. Results showed a preference in using desktop DICOM viewer with 3D capabilities along with the information provided by Unity-based VR solution for visualizing the virtual model from various angles challenging to analyze on the computer screen. 3D-printed replicas were considered more useful for physically simulating the surgery than for diagnosis. For the VR and 3DP models, the lack of information on bone quality was considered an important drawback. The following order of using the tools was preferred: DICOM viewer, followed by Unity VR and 3DP.


Subject(s)
Orthopedic Procedures , Orthopedic Surgeons , Orthopedics , Virtual Reality , Humans , Printing, Three-Dimensional
4.
J Clin Med ; 9(9)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916844

ABSTRACT

This paper is a systematic review of the literature on 3D-printed anatomical replicas used as templates for precontouring the fixation plates in orthopedic surgery. Embase, PubMed, Cochrane, Scopus and Springer databases were consulted for information on design study, fracture anatomical location, number of patients, surgical technique, virtual modeling approach and 3D printing process. The initial search provided a total of 496 records. After removing the duplicates, the title and abstract screening, and applying exclusion criteria and citations searching, 30 papers were declared eligible and included in the final synthesis. Seven studies were identified as focusing on retrospective non-randomized series of clinical cases, while two papers presented randomized case control studies. Two main approaches were highlighted in developing 3D-printed anatomical models for precontouring fixation plates: (a.) medical reconstruction, virtual planning and fracture reduction followed by 3D printing the model; (b.) medical reconstruction followed by 3D printing the model of the mirrored uninjured side. Revised studies reported advantages such as surgical time and blood loss reduction, while the reduction quality is similar with that of the conventional surgery. During the last couple of years there was an increase in the number of studies focused on precontouring orthopedic plates using 3D printing technology. Three-dimensionally-printed templates for plate precontouring were mostly used for acetabular fractures. Knowledge on medical virtual modeling and reconstruction is mandatory.

5.
Rom J Morphol Embryol ; 58(2): 593-598, 2017.
Article in English | MEDLINE | ID: mdl-28730248

ABSTRACT

Clavicle fracture reported incidence is about 5% of fractures in adult; among them, those located in the middle third of the shaft represent more than 80% from the total of cases. Due to the special morphological and biomechanical constraints of the clavicle, several methods for restoring morphological integrity in these fractures are described, including conservative, non-surgical treatment. The last 10 years of clinical studies in the field have favored the surgical treatment for selected cases; several osteosynthesis implants are in use - mostly anatomical plates with specific advantages and documented complications. A failed anatomical clavicle plate was explanted and analyzed after a protocol using stereomicroscopy, scanning electron microscopy and energy dispersive spectrometry. Based on the computed tomography (CT) scan determination of patient morphological parameters, a finite elements analysis of the failure scenario was completed. The failure analysis has proved that the plate breakage had occurred in the point of maximal elastic stress and minor deformation. The clinical implication is that no hole should remain free of screw during clavicle plate fixation and the implant should be chosen based on patient morphological parameters. In comminuted clavicle fracture, anatomic bridging with locked plate technique may lead to implant failure due to increase of the stress in the midshaft area. Thorough knowledge of anatomy and morphology of complex bones like the clavicle is necessary. Modern osteosynthesis anatomical implants are still to be improved.


Subject(s)
Bone Plates , Clavicle/abnormalities , Fractures, Bone/etiology , Adult , Clavicle/pathology , Fractures, Bone/pathology , Humans , Male
6.
Proc Inst Mech Eng H ; 230(6): 495-515, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27095508

ABSTRACT

There has been a lot of hype surrounding the advantages to be gained from rapid prototyping processes in a number of fields, including medicine. Our literature review aims objectively to assess how effective patient-specific surgical guides manufactured using rapid prototyping are in a number of orthopaedic surgical applications. To this end, we carried out a systematic review to identify and analyse clinical and experimental literature studies in which rapid prototyping patient-specific surgical guides are used, focusing especially on those that entail quantifiable outcomes and, at the same time, providing details on the guides' design and type of manufacturing process. Here, it should be mentioned that in this field there are not yet medium- or long-term data, and no information on revisions. In the reviewed studies, the reported positive opinions on the use of rapid prototyping patient-specific surgical guides relate to the following main advantages: reduction in operating times, low costs and improvements in the accuracy of surgical interventions thanks to guides' personalisation. However, disadvantages and sources of errors which can cause patient-specific surgical guide failures are as well discussed by authors. Stereolithography is the main rapid prototyping process employed in these applications although fused deposition modelling or selective laser sintering processes can also satisfy the requirements of these applications in terms of material properties, manufacturing accuracy and construction time. Another of our findings was that individualised drill guides for spinal surgery are currently the favourite candidates for manufacture using rapid prototyping. Other emerging applications relate to complex orthopaedic surgery of the extremities: the forearm and foot. Several procedures such as osteotomies for radius malunions or tarsal coalition could become standard, thanks to the significant assistance provided by rapid prototyping patient-specific surgical guides in planning and performing such operations.


Subject(s)
Orthopedic Procedures/methods , Patient-Specific Modeling , Surgery, Computer-Assisted/methods , Biomedical Engineering , Computer-Aided Design , Humans , Imaging, Three-Dimensional , Models, Anatomic
7.
Knee Surg Sports Traumatol Arthrosc ; 11(3): 167-72, 2003 May.
Article in English | MEDLINE | ID: mdl-12774154

ABSTRACT

We present the results of a prospective study evaluating the arthroscopic technique of outside-in meniscus suture (n=68). The types of tears suitable for suture consisted of acute vertical tears, solitary or in association with a radial tear in middle third. The technique was always outside-in using resorbable sutures (2-0 PDS, 2-0 Maxon). Follow-up evaluation included clinical examination, radiographic examinations and second-look arthroscopies (n=10). There were four failures in this study, consisting of rerupture of the meniscus. Clinical results were good in 91% with complete recovery and return to physical and sportive activity, good in 3% with mild symptoms, and failure in 6% consisting of meniscus rerupture.


Subject(s)
Arthroscopy/methods , Menisci, Tibial/surgery , Suture Techniques , Tibial Meniscus Injuries , Adolescent , Adult , Biocompatible Materials , Female , Humans , Male , Middle Aged , Prospective Studies , Recovery of Function , Recurrence , Rupture/surgery , Second-Look Surgery , Sutures , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...