Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Energy Mater ; 7(1): 302-311, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38213555

ABSTRACT

Oxygen transport membranes (OTMs) are a promising oxygen production technology with high energy efficiency due to the potential for thermal integration. However, conventional perovskite materials of OTMs are unstable in CO2 atmospheres, which limits their applicability in oxycombustion processes. On the other hand, some dual-phase membranes are stable in CO2 and SO2 without permanent degradation. However, oxygen permeation is still insufficient; therefore, intensive research focuses on boosting oxygen permeation. Here, we present a novel dual-phase membrane composed of an ion-conducting fluorite phase (Ce0.8Tb0.2O2-δ, CTO) and an electronic-conducting spinel phase (Co2MnO4, CMO). CMO spinel exhibits high electronic conductivity (60 S·cm-1 at 800 °C) compared to other spinels used in dual-phase membranes, i.e., 230 times higher than that of NiFe2O4 (NFO). This higher conductivity ameliorates gas-solid surface exchange and bulk diffusion mechanisms. By activating the bulk membrane with a CMO/CTO porous catalytic layer, it was possible to achieve an oxygen flux of 0.25 mL·min-1·cm-2 for the 40CMO/60CTO (%vol), 680 µm-thick membrane at 850 °C even under CO2-rich environments. This dual-phase membrane shows excellent potential as an oxygen transport membrane or oxygen electrode under high CO2 and oxycombustion operation.

SELECTION OF CITATIONS
SEARCH DETAIL
...