Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501335

ABSTRACT

The use of formulations containing botanical products for controlling insects that vector human and animal diseases has increased in recent years. Plant extracts seem to offer fewer risks to the environment and to human health without reducing the application strategy's efficacy when compared to synthetic and conventional insecticides and repellents. Here, we evaluated the potential of extracts obtained from caninana, Chiococca alba (L.) Hitchc. (Rubiaceae), plants as a tool to be integrated into the management of Aedes aegypti, one of the principal vectors for the transmission of arborviruses in humans. We assessed the larvicidal and repellence performance against adult mosquitoes and evaluated the potential undesired effects of the extracts on non-target organisms. We assessed the susceptibility and predatory abilities of the nymphs of Belostoma anurum, a naturally occurring mosquito larva predator, and evaluated the C. alba extract's cytotoxic effects in mammalian cell lines. Our chromatographic analysis revealed 18 compounds, including rutin, naringin, myricetin, morin, and quercetin. The methanolic extracts of C. alba showed larvicidal (LC50 = 82 (72-94) mg/mL) activity without killing or affecting the abilities of B. anurum to prey upon mosquito larvae. Our in silico predictions revealed the molecular interactions between rutin and the AeagOBP1 receptor to be one possible mechanism for the repellent potential recorded for formulations containing C. alba extracts. Low cytotoxicity against mammalian cell lines reinforces the selectivity of C. alba extracts. Collectively, our findings highlight the potential of C. alba and one of its constituents (rutin) as alternative tools to be integrated into the management of A. aegypti mosquitoes.

2.
Sci Rep ; 10(1): 5518, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32218451

ABSTRACT

Bacillus thuringiensis serovar israelensis (Bti) is used to control insect vectors of human and animal diseases. In the present study, the toxicity of four strains of Bti, named T0124, T0131, T0137, and T0139, toward Aedes aegypti and Culex quinquefasciatus larvae was analyzed. The T0131 strain showed the highest larvicidal activity against A. aegypti (LC50 = 0.015 µg/ml) and C. quinquefasciatus larvae (LC50 = 0.035 µg/ml) when compared to the other strains. Furthermore, the genomic sequences of the four strains were obtained and compared. These Bti strains had chromosomes sizes of approximately 5.4 Mb with GC contents of ~35% and 5472-5477 putative coding regions. Three small plasmids (5.4, 6.8, and 7.6 kb) and three large plasmids (127, 235, and 359 kb) were found in the extrachromosomal content of all four strains. The SNP-based phylogeny revealed close relationship among isolates from this study and other Bti isolates, and SNPs analysis of the plasmids 127 kb did not reveal any mutations in δ-endotoxins genes. This newly acquired sequence data for these Bti strains may be useful in the search for novel insecticidal toxins to improve existing ones or develop new strategies for the biological control of important insect vectors of human and animal diseases.


Subject(s)
Aedes/parasitology , Bacillus thuringiensis/classification , Chromosomes, Bacterial/genetics , Culex/parasitology , Genomics/methods , Whole Genome Sequencing/methods , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/immunology , Bacillus thuringiensis Toxins/genetics , Base Composition , Endotoxins/genetics , Genome Size , Hemolysin Proteins/genetics , Larva/parasitology , Mosquito Vectors/parasitology , Phylogeny , Plasmids/genetics , Polymorphism, Single Nucleotide , Serogroup
3.
J Surg Res ; 85(1): 130-5, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10383849

ABSTRACT

BACKGROUND: Hindlimb ischemia-reperfusion (HIR) impairs cellular energy metabolism and causes local muscle injury possibly through free radical or complement-mediated mechanisms. MATERIALS AND METHODS: To determine the relationship among myocellular energetics, histopathological injury, and mediator activity, male Wistar rats underwent 4 h of Sham (n = 8), Unilateral (n = 8), or Bilateral (n = 8) hindlimb ischemia followed by 4 h of reperfusion. All rats underwent 31P magnetic resonance spectroscopy of their right gastrocnemius muscle to determine various high-energy phosphate ratios including ATP to Pi (ATP/Pi, a measure of energy status) and phosphocreatine to Pi (PCr/Pi, a measure of thermodynamic capacity). Gastrocnemius muscles were then harvested to determine muscle damage and complement membrane attack complex (MAC) deposition by immunohistochemical staining [grade 0 (none) to 3 (very severe)] and to measure glutathione (GSH), DNA, and enzyme activities: beta-hydroxyacyl-CoA dehydrogenase, phosphofructokinase, and citrate synthetase. RESULTS: HIR was associated with significant declines in ATP/Pi and PCr/Pi (P < 0.001). Progressively more severe HIR (Sham, Unilateral, Bilateral) was associated with greater MAC deposition (0. 0 +/- 0.0, 1.0 +/- 0.3, 1.5 +/- 0.4, P = 0.06, mean +/- SEM) and histological damage (0.0 +/- 0.0, 0.9 +/- 0.3, 1.3 +/- 0.4, P < 0. 05). GSH levels, beta-hydroxyacyl-CoA dehydrogenase, and citrate synthetase activities were not affected by HIR, but phosphofructokinase activity increased (24.09 +/- 2.42, 35.16 +/- 5. 26, 59.29 +/- 9.82 mmol/mg of DNA/min, P < 0.05). Although GSH levels were not significantly altered, complement deposition was closely associated with skeletal muscle injury and compensatory changes in glycolysis. Alterations in myocellular bioenergetics after HIR closely paralleled complement deposition rather than GSH depletion. CONCLUSIONS: Therapeutic strategies aimed at controlling complement activity and assessment techniques based on bioenergetics may allow more precise determinations of the effects of HIR injury.


Subject(s)
Complement System Proteins/metabolism , Glycolysis/physiology , Hindlimb/blood supply , Ischemia/metabolism , Reperfusion Injury/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Complement Membrane Attack Complex/metabolism , Energy Metabolism/physiology , Ischemia/pathology , Magnetic Resonance Spectroscopy , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Phosphates/metabolism , Rats , Rats, Wistar
4.
Arch Surg ; 133(12): 1316-21, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9865649

ABSTRACT

OBJECTIVE: To determine the effects of phosphocreatine (PCr) depletion on myocellular energetics. DESIGN: Randomized controlled study. SETTING: University laboratory. MATERIALS: Thirty-eight adult male Wistar rats (110-121 g). METHODS: The poorly metabolized creatine analogue beta-guanidinopropionic acid, (beta-GPA, 2% of a gel diet) was fed to the rats for 14 days to replace (75%) endogenous PCr stores before cecal ligation and puncture (CLP). Rats were randomized to receive sham operation and gel diet (sham-gel group [n=10]), sham operation and beta-GPA diet (sham-beta-GPA group [n=9]), CLP and gel diet (CLP-gel group [n=10]), and CLP and beta-GPA diet (CLP-beta-GPA group [n=9]). On day 14, all animals underwent operation. Twenty-four hours later, in vivo phosphorus 31-labeled magnetic resonance spectroscopy (31P-MRS) of the gastrocnemius muscle was performed. Muscle samples were collected to determine enzyme activities of beta-hydroxyacyl-CoA dehydrogenase, phosphofructokinase, citrate synthase, and the metabolites adenosine triphosphate (ATP), PCr, inorganic phosphate, and creatine. Free adenosine diphosphate levels, the phosphorylation potential, and free energy change of ATP hydrolysis were then calculated. RESULTS: All animals undergoing CLP but no controls had positive results of blood cultures. Although sham-beta-GPA animals had altered bioenergetics, CLP-beta-GPA rats experienced a greater deterioration of energy state compared with CLP-gel controls. Glycolytic and oxidative enzyme activities were not significantly different between groups and therefore could not explain the observed differences. CONCLUSIONS: There is an overall decrease in energy availability during sepsis, which is worsened by PCr depletion. These changes support the contention that PCr plays an important role as an ATP buffer during systemic infection.


Subject(s)
Energy Metabolism , Muscle, Skeletal/metabolism , Phosphocreatine/physiology , Sepsis/metabolism , Sepsis/physiopathology , Animals , Male , Muscle, Skeletal/cytology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...