Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 1226, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38216624

ABSTRACT

Although the ecological network approach has substantially contributed to the study of plant-pollinator interactions, current understanding of their functional structure is biased towards diurnal pollinators. Nocturnal pollinators have been systematically ignored despite the publication of several studies that have tried to alleviate this diurnal bias. Here, we explored whether adding this neglected group of pollinators had a relevant effect on the overall architecture of three high mountain plant-pollinator networks. Including nocturnal moth pollinators modified network properties by decreasing total connectivity, connectance, nestedness and robustness to plant extinction; and increasing web asymmetry and modularity. Nocturnal moths were not preferentially connected to the most linked plants of the networks, and they were grouped into a specific "night" module in only one of the three networks. Our results indicate that ignoring the nocturnal component of plant-pollinator networks may cause changes in network properties different from those expected from random undersampling of diurnal pollinators. Consequently, the neglect of nocturnal interactions may provide a distorted view of the structure of plant-pollinator networks with relevant implications for conservation assessments.


Subject(s)
Moths , Pollination , Animals , Plants , Insecta
2.
Ann Bot ; 132(3): 541-552, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37647862

ABSTRACT

BACKGROUND AND AIMS: Within-population genetic and phenotypic variation play a key role in the development of adaptive responses to environmental change. Between-population variation is also an essential element in assessing the evolutionary potential of species in response to changes in environmental conditions. In this context, common garden experiments are a useful tool to separate the genetic and environmental components of phenotypic variation. We aimed to assess within- and between-population phenotypic variation of Lupinus angustifolius L. in terms of its evolutionary potential to adapt to ongoing climate change. METHODS: We evaluated populations' phenotypic variation of foliar, phenological and reproductive traits with a common garden experiment. Patterns of functional trait variation were assessed with (1) mixed model analyses and coefficients of variation (CVs) with confidence intervals, (2) principal component analyses (PCAs) and (3) correlations between pairs of traits. Analyses were performed at the population level (four populations) and at the latitude level (grouping pairs of populations located in two latitudinal ranges). KEY RESULTS: Phenotypic variation had a significant genetic component associated with a latitudinal pattern. (1) Mixed models found lower specific leaf area, advanced flowering phenology and lower seed production of heavier seeds in southern populations, whereas CV analyses showed lower within-latitude variation especially in phenological and reproductive traits in southern populations. (2) PCAs showed a clearer differentiation of phenotypic variation between latitudes than between populations. (3) Correlation analyses showed a greater number of significant correlations between traits in southern populations (25 vs. 13). CONCLUSIONS: Between-population phenotypic variation was determined by contrasting temperature and drought at different latitude and elevation. Southern populations had differential trait values compatible with adaptations to high temperatures and drought. Moreover, they had lower within-population variation and a greater number of trait correlations probably as a result of these limiting conditions, making them more vulnerable to climate change.


Subject(s)
Lupinus , Lupinus/genetics , Phenotype , Seeds , Plant Leaves , Reproduction
3.
Plants (Basel) ; 12(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986946

ABSTRACT

Climate change poses a novel threat to biodiversity that urgently requires the development of adequate conservation strategies. Living organisms respond to environmental change by migrating to locations where their ecological niche is preserved or by adapting to the new environment. While the first response has been used to develop, discuss and implement the strategy of assisted migration, facilitated adaptation is only beginning to be considered as a potential approach. Here, we present a review of the conceptual framework for facilitated adaptation, integrating advances and methodologies from different disciplines. Briefly, facilitated adaptation involves a population reinforcement that introduces beneficial alleles to enable the evolutionary adaptation of a focal population to pressing environmental conditions. To this purpose, we propose two methodological approaches. The first one (called pre-existing adaptation approach) is based on using pre-adapted genotypes existing in the focal population, in other populations, or even in closely related species. The second approach (called de novo adaptation approach) aims to generate new pre-adapted genotypes from the diversity present in the species through artificial selection. For each approach, we present a stage-by-stage procedure, with some techniques that can be used for its implementation. The associated risks and difficulties of each approach are also discussed.

4.
Evol Appl ; 16(1): 62-73, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36699122

ABSTRACT

In the present framework of global warming, it is unclear whether evolutionary adaptation can happen quick enough to preserve the persistence of many species. Specifically, we lack knowledge about the adaptive potential of the different populations in relation to the various constraints that may hamper particular adaptations. There is evidence indicating that early flowering often provides an adaptive advantage to plants in temperate zones in response to global warming. Thus, the objective of this study was to assess the adaptive potential for advancing flowering onset in Lupinus angustifolius L. (Fabaceae). Seeds from four populations from two contrasting latitudes in Spain were collected and sown in a common garden environment. Selecting the 25% of the individuals that flowered earlier in the first generation, over three generations, three different early flowering selection lines were established, involving both self-crosses and outcrosses. All artificial selection lines advanced their flowering significantly with respect to the control line in the northernmost populations, but not in the southern ones. Selection lines obtained from outcrossing had a greater advancement in flowering than those from self-crossing. No differences were found in the number or weight of the seeds produced between control and artificial selection lines, probably because plants in the common garden were drip irrigated. These results suggest that northern populations may have a greater adaptive potential and that southern populations may be more vulnerable in the context of climate warming. However, earlier flowering was also associated with changes in other traits (height, biomass, shoot growth, specific leaflet area, and leaflet dry matter content), and the effects of these changes varied greatly depending on the latitude of the population and selection line. Assessments of the ability of populations to cope with climate change through this and other approaches are essential to manage species and populations in a more efficient way.

5.
Glob Chang Biol ; 28(13): 4143-4162, 2022 07.
Article in English | MEDLINE | ID: mdl-35359032

ABSTRACT

Environmental variation within a species' range can create contrasting selective pressures, leading to divergent selection and novel adaptations. The conservation value of populations inhabiting environmentally marginal areas remains in debate and is closely related to the adaptive potential in changing environments. Strong selection caused by stressful conditions may generate novel adaptations, conferring these populations distinct evolutionary potential and high conservation value under climate change. On the other hand, environmentally marginal populations may be genetically depauperate, with little potential for new adaptations to emerge. Here, we explored the use of ecological niche models (ENMs) linked with common garden experiments to predict and test for genetically determined phenotypic differentiation related to contrasting environmental conditions. To do so, we built an ENM for the alpine plant Silene ciliata in central Spain and conducted common garden experiments, assessing flowering phenology changes and differences in leaf cell resistance to extreme temperatures. The suitability patterns and response curves of the ENM led to the predictions that: (1) the environmentally marginal populations experiencing less snowpack and higher minimum temperatures would have delayed flowering to avoid risks of late-spring frosts and (2) those with higher minimum temperatures and greater potential evapotranspiration would show enhanced cell resistance to high temperatures to deal with physiological stress related to desiccation and heat. The common garden experiments revealed the expected genetically based phenotypic differentiation in flowering phenology. In contrast, they did not show the expected differentiation for cell resistance, but these latter experiments had high variance and hence lower statistical power. The results highlight ENMs as useful tools to identify contrasting putative selective pressures across species ranges. Linking ENMs with common garden experiments provides a theoretically justified and practical way to study adaptive processes, including insights regarding the conservation value of populations inhabiting environmentally marginal areas under ongoing climate change.


Subject(s)
Adaptation, Physiological , Climate Change , Acclimatization , Adaptation, Physiological/physiology , Biological Evolution , Ecosystem
6.
Front Plant Sci ; 13: 817849, 2022.
Article in English | MEDLINE | ID: mdl-35310661

ABSTRACT

Crop wild relatives are species related to cultivated plants, whose populations have evolved in natural conditions and confer them valuable adaptive genetic diversity, that can be used in introgression breeding programs. Targeting four wild lentil taxa in Europe, we applied the predictive characterization approach through the filtering method to identify populations potentially tolerant to drought, salinity, and waterlogging. In parallel, the calibration method was applied to select wild populations potentially resistant to lentil rust and broomrape, using, respectively, 351 and 204 accessions evaluated for these diseases. An ecogeographic land characterization map was used to incorporate potential genetic diversity of adaptive value. We identified 13, 1, 21, and 30 populations potentially tolerant to drought, soil salinity, waterlogging, or resistance to rust, respectively. The models targeting broomrape resistance did not adjust well and thus, we were not able to select any population regarding this trait. The systematic use of predictive characterization techniques may boost the efficiency of introgression breeding programs by increasing the chances of collecting the most appropriate populations for the desired traits. However, these populations must still be experimentally tested to confirm the predictions.

7.
Sci Rep ; 9(1): 15953, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685886

ABSTRACT

Free-range livestock grazing is a widespread human activity that not only modifies natural vegetation but also leads to interactions with wild ungulates. Most commonly, the interactions between cattle and wild ungulates have been studied with a focus on competition for high-quality forage. However, other mechanisms, such as the risk of parasite infection, might better describe this interaction. We aim to determine whether livestock affect roe deer (Capreolus capreolus Linnaeus, 1758) by reducing habitat quality and increasing the probability of infection by shared parasites. We measured noninvasive fecal cortisol metabolites as an indicator of habitat quality as well as the lung nematode larvae burden from the Dictyocaulus genus. A higher Dictyocaulus larvae load was found in the presence of livestock in pines, and feces collected in winter had a higher parasite load than feces collected in autumn. Additionally, fecal cortisol metabolite levels in the roe deer were affected by the interaction between habitat quality and livestock presence and were higher in the poorest habitat and when living in sympatry with cattle. Our results suggest that physiological stress responses in roe deer were mediated by the habitat type and the presence of competitors. The long-term implications of altered physiological responses such as those demonstrated here should be considered in management strategies for deer.


Subject(s)
Deer , Ecosystem , Livestock , Animals , Feces/chemistry , Host-Parasite Interactions , Hydrocortisone/analysis , Stress, Physiological
8.
AoB Plants ; 11(2): plz011, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30996861

ABSTRACT

Epiphytic vascular plants comprise an essential part of the tropical flora and are a key component for ecosystem functioning. Some recent studies have used a network approach to investigate the interaction of epiphytes with host phorophytes at the community level. However, knowledge on commensalistic epiphyte-phorophyte network structure still lags behind with regard to other biotic interaction networks. Our goal was to provide a more complete overall perspective on commensalistic epiphyte-phorophyte interaction and its placement with respect to other better studied mutualistic interactions. We hypothesized that the intensity of the fitness effect of the different types of biotic interactions would determine the degree of specialization of the interacting organisms. Thus, commensalistic epiphyte-phorophyte interactions would have lower specialization than mutualistic interactions. We compiled and analysed the structural properties (nestedness, network specialization and modularity) of 12 commensalistic epiphyte-phorophyte networks and compared them with the same metrics to 11 ant-myrmecophyte, 86 pollination and 13 seed dispersal mutualistic networks. Epiphyte-phorophyte networks were nested and modular with regard to the corresponding null models and had greater nestedness than mutualistic networks, whereas specialization and modularity were significantly lower. Commensalistic epiphyte-phorophyte networks of interactions are both nested and modular, and hence, are structured in a similar way to most other types of networks that involve co-evolutionary interactions. Nevertheless, the nature and intensity of the ecological processes involved in the generation of these patterns is likely to differ. The lower values of modularity in commensalistic epiphyte-phorophyte networks are probably due to the low levels of specialization and the lack of co-evolutionary processes between the interacting partners.

9.
Front Plant Sci ; 9: 1698, 2018.
Article in English | MEDLINE | ID: mdl-30538712

ABSTRACT

The study of the drivers that shape spatial genetic structure across heterogeneous landscapes is one of the main approaches used to understand population dynamics and responses in changing environments. While the Isolation-by-Distance model (IBD) assumes that genetic differentiation increases among populations with geographical distance, the Isolation-by-Resistance model (IBR) also considers geographical barriers and other landscape features that impede gene flow. On the other hand, the Isolation-by-Environment model (IBE) explains genetic differentiation through environmental differences between populations. Although spatial genetic studies have increased significantly in recent years, plants from alpine ecosystems are highly underrepresented, even though they are great suitable systems to disentangle the role of the different factors that structure genetic variation across environmental gradients. Here, we studied the spatial genetic structure of the Mediterranean alpine specialist Silene ciliata across its southernmost distribution limit. We sampled three populations across an altitudinal gradient from 1850 to 2400 m, and we replicated this sample over three mountain ranges aligned across an E-W axis in the central part of the Iberian Peninsula. We genotyped 20 individuals per population based on eight microsatellite markers and used different landscape genetic tools to infer the role of topographic and environmental factors in shaping observed patterns along the altitudinal gradient. We found a significant genetic structure among the studied Silene ciliata populations which was related to the orography and E-W configuration of the mountain ranges. IBD pattern arose as the main factor shaping population genetic differentiation. Geographical barriers between mountain ranges also affected the spatial genetic structure (IBR pattern). Although environmental variables had a significant effect on population genetic diversity parameters, no IBE pattern was found on genetic structure. Our study reveals that IBD was the driver that best explained the genetic structure, whereas environmental factors also played a role in determining genetic diversity values of this dominant plant of Mediterranean alpine environments.

10.
Sci Rep ; 8(1): 9386, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29925965

ABSTRACT

Phenology is often identified as one of the main structural driving forces of plant - flower visitor networks. Nevertheless, we do not yet have a full understanding of the effects of phenology in basic network build up mechanisms such as ecological modularity. In this study, we aimed to identify the effect of within-season temporal variation of plant and flower visitor activity on the network structural conformation. Thus, we analysed the temporal dynamics of a plant - flower visitor network in two Mediterranean alpine communities during one complete flowering season. In our approach, we built quantitative interaction networks and studied the dynamics through temporal beta diversity of species, interaction changes and modularity analysis. Within-season dissimilarity in the identity of interactions was mainly caused by species replacement through time (species turnover). Temporal replacement of species and interactions clearly impacted modularity, to the extent that species phenology emerged as a strong determinant of modularity in our networks. From an applied perspective, our results highlight the importance of considering the temporal variation of species interactions throughout the flowering season and the requirement of making comprehensive temporal sampling when aiming to build functionally consistent interaction networks.


Subject(s)
Flowers/physiology , Animals , Ecosystem , Insecta/physiology , Pollination/physiology
11.
Environ Monit Assess ; 190(4): 185, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29500547

ABSTRACT

Anthropogenic noise is a growing ubiquitous and pervasive pollutant as well as a recognised stressor that spreads throughout natural ecosystems. However, there is still an urgent need for the assessment of noise impact on natural ecosystems. This article presents a multidisciplinary study which made it possible to isolate noise due to road traffic to evaluate it as a major driver of detrimental effects on wildlife populations. A new indicator has been defined: AcED (the acoustic escape distance) and faecal cortisol metabolites (FCM) were extracted from roe deer faecal samples as a validated indicator of physiological stress in animals moving around in two low-traffic roads that cross a National Park in Spain. Two key findings turned out to be relevant in this study: (i) road identity (i.e. road type defined by traffic volume and average speed) and AcED were the variables that best explained the FCM values observed in roe deer, and (ii) FCM concentration was positively related to increasing traffic volume (road type) and AcED values. Our results suggest that FCM analysis and noise mapping have shown themselves to be useful tools in multidisciplinary approaches and environmental monitoring. Furthermore, our findings aroused the suspicion that low-traffic roads (< 1000 vehicles per day) could be capable of causing higher habitat degradation than has been deemed until now.


Subject(s)
Deer , Environmental Monitoring/methods , Noise, Transportation/adverse effects , Stress, Physiological/physiology , Acoustics , Animals , Animals, Wild , Automobiles , Ecosystem , Female , Male , Population Dynamics , Spain/epidemiology
12.
PLoS One ; 9(1): e87189, 2014.
Article in English | MEDLINE | ID: mdl-24489867

ABSTRACT

BACKGROUND: Plant recruitment depends among other factors on environmental conditions and their variation at different spatial scales. Characterizing dispersal in contrasting environments may thus be necessary to understand natural intraspecific variation in the processes underlying recruitment. Silene ciliata and Armeria caespitosa are two representative species of cryophilic pastures above the tree line in Mediterranean high mountains. No explicit estimations of dispersal kernels have been made so far for these or other high-mountain plants. Such data could help to predict their dispersal and recruitment patterns in a context of changing environments under ongoing global warming. METHODS: We used an inverse modelling approach to analyse effective seed dispersal patterns in five populations of both Silene ciliata and Armeria caespitosa along an altitudinal gradient in Sierra de Guadarrama (Madrid, Spain). We considered four commonly employed two-dimensional seedling dispersal kernels exponential-power, 2Dt, WALD and log-normal. KEY RESULTS: No single kernel function provided the best fit across all populations, although estimated mean dispersal distances were short (<1 m) in all cases. S. ciliata did not exhibit significant among-population variation in mean dispersal distance, whereas significant differences in mean dispersal distance were found in A. caespitosa. Both S. ciliata and A. caespitosa exhibited among-population variation in the fecundity parameter and lacked significant variation in kernel shape. CONCLUSIONS: This study illustrates the complexity of intraspecific variation in the processes underlying recruitment, showing that effective dispersal kernels can remain relatively invariant across populations within particular species, even if there are strong variations in demographic structure and/or physical environment among populations, while the invariant dispersal assumption may not hold for other species in the same environment. Our results call for a case-by-case analysis in a wider range of plant taxa and environments to assess the prevalence and magnitude of intraspecific dispersal variation.


Subject(s)
Seed Dispersal , Silene/physiology , Altitude , Ecosystem , Fertility , Mediterranean Region , Spain , Species Specificity
13.
Am J Bot ; 99(7): e292-4, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22739709

ABSTRACT

PREMISE OF THE STUDY: The focus of this study is to develop microsatellite markers in Armeria caespitosa, a narrow endemic of central Spain. Microsatellite loci are sought to clarify population structure and estimate gene flux among populations. METHODS AND RESULTS: Enriched microsatellite genomic libraries were used for microsatellite isolation. Sixteen microsatellite loci were characterized, eight of which can be used for successful genotyping. Allele number ranged from two to seven per locus. Observed and expected heterozygosity ranged from 0.300 to 0.800 and from 0.296 to 0.733, respectively. Cross-amplification of seven and six loci was successful for A. maritima and A. cantabrica, respectively. CONCLUSIONS: These microsatellites are suitable in the study of population genetics and gene flow among A. caespitosa populations. The information provided by these markers may be useful in the study of this plant's response to global warming.


Subject(s)
Microsatellite Repeats , Plumbaginaceae/genetics , DNA, Plant/genetics , Genetics, Population/methods , Genotyping Techniques , Polymorphism, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...