Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 574(7778): E17, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31582857

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 573(7775): E4, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31488913

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 573(7773): 266-270, 2019 09.
Article in English | MEDLINE | ID: mdl-31462781

ABSTRACT

Body-axis elongation constitutes a key step in animal development, laying out the final form of the entire animal. It relies on the interplay between intrinsic forces generated by molecular motors1-3, extrinsic forces exerted by adjacent cells4-7 and mechanical resistance forces due to tissue elasticity or friction8-10. Understanding how mechanical forces influence morphogenesis at the cellular and molecular level remains a challenge1. Recent work has outlined how small incremental steps power cell-autonomous epithelial shape changes1-3, which suggests the existence of specific mechanisms that stabilize cell shapes and counteract cell elasticity. Beyond the twofold stage, embryonic elongation in Caenorhabditis elegans is dependent on both muscle activity7 and the epidermis; the tension generated by muscle activity triggers a mechanotransduction pathway in the epidermis that promotes axis elongation7. Here we identify a network that stabilizes cell shapes in C. elegans embryos at a stage that involves non-autonomous mechanical interactions between epithelia and contractile cells. We searched for factors genetically or molecularly interacting with the p21-activating kinase homologue PAK-1 and acting in this pathway, thereby identifying the α-spectrin SPC-1. Combined absence of PAK-1 and SPC-1 induced complete axis retraction, owing to defective epidermal actin stress fibre. Modelling predicts that a mechanical viscoplastic deformation process can account for embryo shape stabilization. Molecular analysis suggests that the cellular basis for viscoplasticity originates from progressive shortening of epidermal microfilaments that are induced by muscle contractions relayed by actin-severing proteins and from formin homology 2 domain-containing protein 1 (FHOD-1) formin bundling. Our work thus identifies an essential molecular lock acting in a developmental ratchet-like process.


Subject(s)
Actins/metabolism , Body Patterning/physiology , Caenorhabditis elegans/embryology , Actin Cytoskeleton/metabolism , Animals , Caenorhabditis elegans/cytology , Embryo, Nonmammalian , Epidermal Cells/cytology
4.
Oncogene ; 37(15): 1991-2007, 2018 04.
Article in English | MEDLINE | ID: mdl-29367756

ABSTRACT

Rhabdomyosarcoma is the most common soft-tissue sarcoma in childhood and histologically resembles developing skeletal muscle. Alveolar rhabdomyosarcoma (ARMS) is an aggressive subtype with a higher rate of metastasis and poorer prognosis. The majority of ARMS tumors (80%) harbor a PAX3-FOXO1 or less commonly a PAX7-FOXO1 fusion gene. The presence of either the PAX3-FOXO1 or PAX7-FOXO1 fusion gene foretells a poorer prognosis resulting in clinical re-classification as either fusion-positive (FP-RMS) or fusion-negative RMS (FN-RMS). The PAX3/7-FOXO1 fusion genes result in the production of a rogue transcription factors that drive FP-RMS pathogenesis and block myogenic differentiation. Despite knowing the molecular driver of FP-RMS, targeted therapies have yet to make an impact for patients, highlighting the need for a greater understanding of the molecular consequences of PAX3-FOXO1 and its target genes including microRNAs. Here we show FP-RMS patient-derived xenografts and cell lines display a distinct microRNA expression pattern. We utilized both loss- and gain-of function approaches in human cell lines with knockdown of PAX3-FOXO1 in FP-RMS cell lines and expression of PAX3-FOXO1 in human myoblasts and identified microRNAs both positively and negatively regulated by the PAX3-FOXO1 fusion protein. We demonstrate PAX3-FOXO1 represses miR-221/222 that functions as a tumor suppressing microRNA through the negative regulation of CCND2, CDK6, and ERBB3. In contrast, miR-486-5p is transcriptionally activated by PAX3-FOXO1 and promotes FP-RMS proliferation, invasion, and clonogenic growth. Inhibition of miR-486-5p in FP-RMS xenografts decreased tumor growth, illustrating a proof of principle for future therapeutic intervention. Therefore, PAX3-FOXO1 regulates key microRNAs that may represent novel therapeutic vulnerabilities in FP-RMS.


Subject(s)
MicroRNAs/genetics , Muscle Neoplasms/genetics , Oncogene Proteins, Fusion/physiology , Paired Box Transcription Factors/physiology , Rhabdomyosarcoma, Alveolar/genetics , Animals , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Child , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HEK293 Cells , Humans , Mice , Mice, SCID , Microarray Analysis , Muscle Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Paired Box Transcription Factors/genetics , Rhabdomyosarcoma, Alveolar/pathology
5.
Development ; 143(11): 2012-24, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27122167

ABSTRACT

Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly.


Subject(s)
Cell Movement , Organogenesis , Taste Buds/cytology , Taste Buds/growth & development , Zebrafish/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Count , Cell Differentiation , Cell Lineage , Enhancer Elements, Genetic/genetics , Larva/cytology , Larva/metabolism , Serotonin/metabolism , Transcription Factors , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...