Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 11(14): 5497-5503, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32586096

ABSTRACT

The impact of the four predominant (010), (110), (001), and (121) exposed facets obtained experimentally for monoclinic BiVO4 on its photocatalytic performance for water splitting reactions is investigated on the basis of the hybrid density functional theory including the spin-orbit coupling. Although their electronic structure is similar, their transport and redox properties reveal anisotropic characters based on the crystal orientation and termination. The particular role of each facet in proton reduction was correlated with the surface Bi coordination number and their geometrical distribution. Our work predicts the (001) facet as the only good candidate for both HER and OER, while the (010) facet is a fitting candidate for OER only. The (110) and (121) surfaces are acceptable candidates only for OER but less potential than (001) and (010). These outcomes will efficiently conduct experimentalists for an attentive design of facet-oriented BiVO4 samples toward improving water oxidation and proton reduction.

2.
Phys Chem Chem Phys ; 19(19): 12321-12330, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28453012

ABSTRACT

The investigation of the BiCuOCh (Ch = S, Se and Te) semiconductor family for thermoelectric or photovoltaic materials is a topic of increasing research interest. These materials can also be considered for photochemical water splitting if one representative having a bandgap, Eg, at around 2 eV can be developed. With this aim, we simulated the solid solutions Bi1-xRExCuOS (RE = Y, La, Gd and Lu) from pure BiCuOS (Eg ∼ 1.1 eV) to pure RECuOS compositions (Eg ∼ 2.9 eV) by DFT calculations based on the HSE06 range-separated hybrid functional with the inclusion of spin-orbit coupling. Starting from the thermodynamic stability of the solid solution, several properties were computed for each system including bandgaps, dielectric constants, effective masses and exciton binding energies. We discussed the variation of these properties based on the relative organization of Bi and RE atoms in their common sublattice to offer a physical understanding of the influence of the RE doping of BiCuOS. Some compositions were found to give appropriate properties for water splitting applications. Furthermore, we found that at low RE fractions the transport properties of BiCuOS are improved that can find applications beyond water splitting.

3.
J Phys Chem Lett ; 8(7): 1664-1669, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28332394

ABSTRACT

We explored the impact of interfacial defects on the stability and optoelectronic properties of monolayer transition metal dichalcogenide lateral heterojunctions using a density functional theory approach. As a prototype, we focused on the MoS2-WSe2 system and found that even a random alloy-like interface with a width of less than 1 nm has only a minimal impact on the band gap and alignment compared to the defect-less interface. The largest impact is on the evolution of the electrostatic potential across the monolayer. Similar to defect-less interfaces, a small number of defects results in an electrostatic potential profile with a sharp change at the interface, which facilitates exciton dissociation. Differently, a large number of defects results in an electrostatic potential profile switching smoothly across the interface, which is expected to reduce the capability of the heterojunction to promote exciton dissociation. These results are generalizable to other transition metal dichalcogenide lateral heterojunctions.

4.
J Chem Phys ; 144(13): 134702, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27059580

ABSTRACT

Density functional theory calculation was conducted to determine the optoelectronic properties of bismuth titanate sillenite (Bi12TiO20) and perovskite-like (Bi4Ti3O12) structures. The lattice parameters were experimentally obtained from Rietveld analysis. The density functional perturbation theory approach was used with the standard Perdew-Burke-Ernzerhof functional and screened Coulomb hybrid Heyd-Scuseria-Ernzerhof functional to investigate the electronic structure and absorption coefficient. Both compounds have good carrier transport properties, low effective hole and electron masses, high dielectric constant, and low exciton binding energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...