Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 89(21): 11818-11824, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29019249

ABSTRACT

Thin, micromachined Si wafers, designed as internal reflection elements (IREs) for attenuated total reflectance infrared spectroscopy, are adapted to serve as substrates for electrochemical ATR surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). The 500 µm thick wafer IREs with groove angles of 35° are significantly more transparent at long mid-IR wavelengths as compared to conventional large Si hemisphere IREs. The appeal of greater transparency is mitigated by smaller optical throughput at larger grazing angles and steeper angles of incidence at the reflecting plane that reduce the enhancement factor. Through use of the potential dependent adsorption of 4-methoxypyridine (MOP) as a test system, the microgroove IRE is shown to provide relatively strong electrochemical ATR-SEIRAS responses when the angle of incident radiation is between 50 and 55°, corresponding to refracted angles through the crystal of ∼40°. The higher than expected enhancement is attributed to attenuation of the reflection loss of p-polarized light and multiple reflections within the wafer-based IRE. The micromachined IREs are shown to outperform a 25 mm radius hemisphere in terms of S/N at wavenumbers less than ca. 1400 cm-1 despite the weaker signal enhancement derived from the steeper angle incident on the IRE/sample interface. The high optical transparency of the new IREs allows the spectral observation of displaced water libration bands at ca. 730 cm-1 upon solvent replacement by adsorbed MOP. The results are highly encouraging for the further development of low-cost, Si wafer-based IREs for electrochemical ATR-SEIRAS applications.

2.
Anal Chem ; 88(19): 9351-9354, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27610457

ABSTRACT

Characterization of surface adsorbed species using infrared (IR) spectroscopy provides valuable information concerning interfacial chemical and physical processes. However, in situ infrared studies of surface areas approaching the IR diffraction limit, such as micrometer scale electrodes, require a hitherto unrealized means to obtain high signal-to-noise (S/N) spectra from femtomole quantities of adsorbed molecules. A major methodological breakthrough is described that couples the high brilliance of synchrotron-sourced infrared microscopy with attenuated total reflection surface enhanced infrared spectroscopy (ATR-SEIRAS). The method is shown to allow the spectral measurement of a monolayer of 4-methoxypyridine (MOP) adsorbed on a surface enhancing gold film electrode under fully operational electrochemistry conditions. A factor of 15 noise improvement is achieved with small apertures using synchrotron IR relative to a thermal IR source. The very low noise levels allow the measurement of high quality IR spectra of 2.5 fmol of molecules confined to a 125 µm2 beam spot.

3.
Langmuir ; 32(9): 2225-35, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26867110

ABSTRACT

Surface-enhanced infrared adsorption spectroscopy (SEIRAS) and neutron reflectometry (NR) were employed to characterize ubiquinone (UQ) containing hybrid bilayer membranes. The biomimetic membrane was prepared by fusing phospholipid vesicles on a hydrophobic octadecanethiol monolayer self-assembled on a thin gold film. Using SEIRAS, the assembly of the membrane is monitored in situ. The presence of ubiquinone is verified by the characteristic carbonyl peaks from the quinone ester. A well-ordered distal lipid leaflet results from fusion of vesicles with and without the addition of ubiquinone. With applied potential, the hybrid bilayer membrane in the absence of UQ behaves in the same way as previously reported solid supported phospholipid membranes. When ubiquinone is incorporated in the membrane, electric field induced changes in the distal leaflet are suppressed. Changes in the infrared vibrations of the ubiquinone due to applied potential indicate the head groups are located in both polar and nonpolar environments. The spectroscopic data reveal that the isoprenoid unit of the ubiquinone is likely lying in the midplane of the lipid bilayer while the head has some freedom to move within the hydrophobic core. The SEIRAS experiments show redox behavior of UQ incorporated in a model lipid membrane that are otherwise inaccessible with traditional electrochemistry techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...