Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2356-66, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25195749

ABSTRACT

Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) play a key role in biomass recycling in nature. They are typically the most abundant enzymes expressed by potent cellulolytic fungi, and are also responsible for the majority of hydrolytic potential in enzyme cocktails for industrial processing of plant biomass. The thermostability of the enzyme is an important parameter for industrial utilization. In this study, Cel7 enzymes from different fungi were expressed in a fungal host and assayed for thermostability, including Hypocrea jecorina Cel7A as a reference. The most stable of the homologues, Humicola grisea var. thermoidea Cel7A, exhibits a 10°C higher melting temperature (T(m) of 72.5°C) and showed a 4-5 times higher initial hydrolysis rate than H. jecorina Cel7A on phosphoric acid-swollen cellulose and showed the best performance of the tested enzymes on pretreated corn stover at elevated temperature (65°C, 24 h). The enzyme shares 57% sequence identity with H. jecorina Cel7A and consists of a GH7 catalytic module connected by a linker to a C-terminal CBM1 carbohydrate-binding module. The crystal structure of the H. grisea var. thermoidea Cel7A catalytic module (1.8 Šresolution; R(work) and R(free) of 0.16 and 0.21, respectively) is similar to those of other GH7 CBHs. The deviations of several loops along the cellulose-binding path between the two molecules in the asymmetric unit indicate higher flexibility than in the less thermostable H. jecorina Cel7A.


Subject(s)
Cellulase/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Sordariales/enzymology , Amino Acid Sequence , Cellulose 1,4-beta-Cellobiosidase/chemistry , Cellulose 1,4-beta-Cellobiosidase/genetics , Cloning, Molecular , Crystallography, X-Ray , Enzyme Stability , Genes, Fungal , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid
2.
J Mol Biol ; 425(3): 622-35, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23220193

ABSTRACT

Cellulases, glycoside hydrolases that catalyze the degradation of cellulose, are classified as either endoglucanases or cellobiohydrolases (CBHs) based on their architecture and mode of action on the cellulose. CBHs bind the cellulose chain in a more or less closed tunnel and cleave off cellobiose units processively from one end of the cellulosic polymer, while endoglucanases have their active sites in a more or less open cleft and show a higher tendency to cut bonds internally in the polymer. The CBH Cel6A (also called CBH2) from the ascomycete Hypocrea jecorina has a much shorter substrate-binding tunnel and seems less processive than the CBH Cel7A (CBH1), from the same fungus. Here, we present the X-ray crystal structure of the catalytic domain of the CBH Cel6B, also called E3, from the soil bacterium Thermobifida fusca, both in its apo form and co-crystallized with cellobiose. The enzyme structure reveals that the Cel6B enzyme has a much longer substrate-binding site than its fungal GH6 counterparts. The tunnel is comparable in length to that of GH7 CBHs. In the ligand structure with cellobiose, the tunnel exit is completely closed by a 13-residue loop not present in fungal GH6 enzymes. The loop needs to be displaced to allow cellobiose product release for a processive action by the enzyme. When ligand is absent, seven of these residues are not visible in the electron density and the tunnel exit is open.


Subject(s)
Actinomycetales/enzymology , Cellulose 1,4-beta-Cellobiosidase/chemistry , Actinomycetales/chemistry , Amino Acid Sequence , Catalytic Domain , Cellobiose/chemistry , Cellobiose/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Binding , Sequence Alignment
3.
Biotechnol Biofuels ; 3: 20, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20822549

ABSTRACT

The complex technology of converting lignocellulose to fuels such as ethanol has advanced rapidly over the past few years, and enzymes are a critical component of this technology. The production of effective enzyme systems at cost structures that facilitate commercial processes has been the focus of research for many years. Towards this end, the H. jecorina cellobiohydrolases, CEL7A and CEL6A, have been the subject of protein engineering at Genencor. Our first rounds of cellobiohydrolase engineering were directed towards improving the thermostability of both of these enzymes and produced variants of CEL7A and CEL6A with apparent melting temperatures above 70°C, placing their stability on par with that of H. jecorina CEL5A (EG2) and CEL3A (BGL1). We have now moved towards improving CEL6A- and CEL7A-specific performance in the context of a complete enzyme system under industrially relevant conditions. Achievement of these goals required development of new screening strategies and tools. We discuss these advances along with some results, focusing mainly on engineering of CEL6A.

SELECTION OF CITATIONS
SEARCH DETAIL
...