Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 148(10): 102306, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29544283

ABSTRACT

We present a path-integral-molecular-dynamics study of the thermodynamic stabilities of DOH⋯ X- and HOD⋯ X- (X = F, Cl, Br, I) coordination in aqueous solutions at ambient conditions. In agreement with experimental evidence, our results for the F- case reveal a clear stabilization of the latter motif, whereas, in the rest of the halogen series, the former articulation prevails. The DOH⋯ X- preference becomes more marked the larger the size of the ionic solute. A physical interpretation of these tendencies is provided in terms of an analysis of the global quantum kinetic energies of the light atoms and their geometrical decomposition. The stabilization of the alternative ionic coordination geometries is the result of a delicate balance arising from quantum spatial dispersions along parallel and perpendicular directions with respect to the relevant O-H⋯X- axis, as the strength of the water-halide H-bond varies. This interpretation is corroborated by a complementary analysis performed on the different spectroscopic signals of the corresponding IR spectra.

2.
J Chem Phys ; 144(6): 061101, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26874474

ABSTRACT

We present results of ring polymer molecular dynamics simulations that shed light on the effects of nuclear quantum fluctuations on tunneling motions in cyclic [H2O]3 and [D2O]3, at the representative temperature of T = 75 K. In particular, we focus attention on free energies associated with two key isomerization processes: The first one corresponds to flipping transitions of dangling OH bonds, between up and down positions with respect to the O-O-O plane of the cluster; the second involves the interchange between connecting and dangling hydrogen bond character of the H-atoms in a tagged water molecule. Zero point energy and tunneling effects lead to sensible reductions of the free energy barriers. Due to the lighter nature of the H nuclei, these modifications are more marked in [H2O]3 than in [D2O]3. Estimates of the characteristic time scales describing the flipping transitions are consistent with those predicted based on standard transition-state-approximation arguments.

3.
J Phys Chem B ; 119(29): 9123-8, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-25423289

ABSTRACT

Using molecular dynamics techniques, we examine structural and dynamical characteristics of liquid-like imidazole (Im) monolayers physisorbed onto a planar graphite sheet, at T = 384 K. Our simulations reveal that molecular orientations in the saturated monolayer exhibit a bistable distribution, characterized by an inner parallel arrangement of the molecules in close contact with the substrate and a slanted alignment, in those lying in adjacent, outer locations. Compared to the results found in three-dimensional, bulk phases, the analysis of the spatial correlations between sites participating in hydrogen bonding shows a clear enhancement of the intermolecular interactions, which also leads to stronger dipolar correlations. As a result, the gross structural features of the monolayer can be cast in terms of mesoscopic domains, comprising units articulated via winding hydrogen bonds, that persist along typical time intervals of a few tens of picoseconds. On the dynamical side, a similar comparison of the characteristic decorrelation time for orientational motions shows a 4-fold increment. Contrasting, the reduction of the system dimensionality leads to a larger diffusion constant. Possible substrate-induced anisotropies in the diffusive motions are also investigated.


Subject(s)
Graphite/chemistry , Imidazoles/chemistry , Hydrogen Bonding , Molecular Dynamics Simulation
4.
J Chem Phys ; 139(16): 164506, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24182048

ABSTRACT

Ring polymer molecular dynamics experiments have been carried out to examine effects derived from nuclear quantum fluctuations at ambient conditions on equilibrium and non-equilibrium dynamical characteristics of charge solvation by a popular simple, rigid, water model, SPC/E , and for a more recent, and flexible, q-TIP4P/F model, to examine the generality of conclusions. In particular, we have recorded the relaxation of the solvent energy gap following instantaneous, ±e charge jumps in an initially uncharged Lennard-Jones-like solute. In both charge cases, quantum effects are reflected in sharper decays at the initial stages of the relaxation, which produce up to a ∼20% reduction in the characteristic timescales describing the solvation processes. For anionic solvation, the magnitude of polarization fluctuations controlling the extent of the water proton localization in the first solvation shell is somewhat more marked than for cations, bringing the quantum solvation process closer to the classical case. Effects on the solvation response from the explicit incorporation of flexibility in the water Hamiltonian are also examined. Predictions from linear response theories for the overall relaxation profile and for the corresponding characteristic timescales are reasonably accurate for the solvation of cations, whereas we find that they are much less satisfactory for the anionic case.

5.
J Chem Phys ; 139(17): 174315, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24206306

ABSTRACT

We use ring-polymer-molecular-dynamics (RPMD) techniques and the semi-empirical q-TIP4P/F water model to investigate the relationship between hydrogen bond connectivity and the characteristics of nuclear position fluctuations, including explicit incorporation of quantum effects, for the energetically low lying isomers of the prototype cluster [H2O]8 at T = 50 K and at 150 K. Our results reveal that tunneling and zero-point energy effects lead to sensible increments in the magnitudes of the fluctuations of intra and intermolecular distances. The degree of proton spatial delocalization is found to map logically with the hydrogen-bond connectivity pattern of the cluster. Dangling hydrogen bonds exhibit the largest extent of spatial delocalization and participate in shorter intramolecular O-H bonds. Combined effects from quantum and polarization fluctuations on the resulting individual dipole moments are also examined. From the dynamical side, we analyze the characteristics of the infrared absorption spectrum. The incorporation of nuclear quantum fluctuations promotes red shifts and sensible broadening relative to the classical profile, bringing the simulation results in much more satisfactory agreement with direct experimental information in the mid and high frequency range of the stretching band. While RPMD predictions overestimate the peak position of the low frequency shoulder, the overall agreement with that reported using an accurate, parameterized, many-body potential is reasonable, and far superior to that one obtains by implementing a partially adiabatic centroid molecular dynamics approach. Quantum effects on the collective dynamics, as reported by instantaneous normal modes, are also discussed.

6.
Phys Chem Chem Phys ; 11(10): 1484-90, 2009 Mar 14.
Article in English | MEDLINE | ID: mdl-19240924

ABSTRACT

We present a study of the microscopic dynamics of water trapped in reverse non-ionic micelles by means of a series of molecular dynamics simulations. The analysis of the effects of micellar confinement on spectroscopical properties of an excess proton has also been considered. Our micelles were microemulsions made with the neutral surfactant diethylene glycol monodecyl ether [CH(3)(CH(2))(11)(OC(2)H(4))(2)OH]. Simulation experiments including the proton species were performed using a multistate empirical valence bond Hamiltonian model. Diffusion of water in the micelle is markedly slower than that in the bulk liquid, in the same fashion as happens with reorientational dynamics. Spectral densities of hydrogens revealed a blue-shift of the OH-stretching vibration together with a split of the main band into two components. Absorption lineshapes of the solvated proton in the vicinity of the internal surface of the micelle indicate the coexistence of Eigen-like and Zundel-like structures and a tendency to red-shifting (compared to the aqueous unconstrained excess proton case) of the two relevant spectral bands (around 2000 and 2500 wavenumbers) mainly due to the slower dynamics of proton vibrations in water near interfaces.

7.
Phys Rev Lett ; 84(3): 455-8, 2000 Jan 17.
Article in English | MEDLINE | ID: mdl-11015937

ABSTRACT

Ion solvation dynamics following collision of K+ with mesoscopic water-ammonia aggregates is investigated. Two processes determine the postcollision state of the clusters: First, a morphological transformation from a structure characterized by a solid water core and a liquid-phase ammonia sheath into a dumbbell-shaped cluster composed of a liquid water droplet attached to an ammonia subcluster containing the solvated ion. Second, evaporation cools the cluster during and after the morphological change and this evaporative cooling is quantitatively characterized by determining the size-dependent rate constants for these complex clusters.

8.
Phys Rev A ; 43(4): 1932-1939, 1991 Feb 15.
Article in English | MEDLINE | ID: mdl-9905233
SELECTION OF CITATIONS
SEARCH DETAIL
...