Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 126: 279-284, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28233595

ABSTRACT

Reliable measurement of Naturally Occurring Radioactive Materials is of significance in order to comply with environmental regulations and for radiological protection purposes. This paper discusses the standardisation of three reference materials, namely sand, tuff and TiO2 to serve as quality control materials for traceability, method validation and instrument calibration. The sample preparation, material characterization via γ, α and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the assignment of values for both the 4n (Thorium) and 4n+2 (Uranium) decay series are described.

2.
Appl Radiat Isot ; 109: 507-511, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26795270

ABSTRACT

We present a brief report on the progress towards the construction of the National Nuclear Array (NANA), a gamma-ray coincidence spectrometer for discrete-line nuclear structure and decay measurements. The proposed spectrometer will combine a gamma-ray energy resolution of approximately 3% at 1MeV with sub-nanosecond timing discrimination between successive gamma rays in mutually coincident decay cascades. We also review a number of recent measurements using coincidence fast-timing gamma-ray spectroscopy for nuclear structure studies, which have helped to inform the design criteria for the NANA spectrometer.

3.
J Environ Radioact ; 138: 315-22, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24731718

ABSTRACT

Radiochemical analysis of (237)Np is important in a number of fields, such as nuclear forensics, environmental analysis and measurements throughout the nuclear fuel cycle. However analysis is complicated by the lack of a stable isotope of neptunium. Although various tracers have been used, including (235)Np, (239)Np and even (236)Pu, none are entirely satisfactory. However, (236g)Np would be a better candidate for a neptunium yield tracer, as its long half-life means that it is useable as both a radiometric and mass spectrometric measurements. This radionuclide is notoriously difficult to prepare, and limited in scope. In this paper, we examine the options for the production of (236g)Np, based on work carried out at NPL since 2011. However, this work was primarily aimed at the production of (236)Pu, and not (236g)Np and therefore the rate of production are based on the levels of (236)Pu generated in the irradiation of (i) (238)U with protons, (ii) (235)U with deuterons, (iii) (236)U with protons and (iv) (236)U with deuterons. The derivation of a well-defined cross section is complicated by the relevant paucity of information on the variation of the (236m)Np:(236g)Np production ratio with incident particle energy. Furthermore, information on the purity of (236g)Np so produced is similarly sparse. Accordingly, the existing data is assessed and a plan for future work is presented.


Subject(s)
Mass Spectrometry/methods , Neptunium/chemistry , Radiometry/methods , Uranium/chemistry , Radioactive Tracers
SELECTION OF CITATIONS
SEARCH DETAIL
...