Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(6): 063202, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32845670

ABSTRACT

We report on an experimental and theoretical study of the ionization-fragmentation dynamics of argon dimers in intense few-cycle laser pulses with a tagged carrier-envelope phase. We find that a field-driven electron transfer process from one argon atom across the system boundary to the other argon atom triggers subcycle electron-electron interaction dynamics in the neighboring atom. This attosecond electron-transfer process between distant entities and its implications manifests itself as a distinct phase-shift between the measured asymmetry of electron emission curves of the Ar^{+}+Ar^{2+} and Ar^{2+}+Ar^{2+} fragmentation channels. This letter discloses a strong-field route to controlling the dynamics in molecular compounds through the excitation of electronic dynamics on a distant molecule by driving intermolecular electron-transfer processes.

2.
Phys Rev Lett ; 125(2): 023202, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32701337

ABSTRACT

We establish a generalized picture of the phase sensitivity of laser-induced directional bond breaking using the H_{2} molecule as the example. We show that the well-known proton ejection anisotropy measured with few-cycle pulses as a function of their carrier-envelope phases arises as an amplitude modulation of an intrinsic anisotropy that is sensitive to the laser phase at the ionization time and determined by the molecule's electronic structure. Our work furthermore reveals a strong electron-proton correlation that may open up a new approach to experimentally accessing the laser-sub-cycle intramolecular electron dynamics also in larger molecules.

3.
Phys Rev Lett ; 124(10): 103201, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32216425

ABSTRACT

We report on the unambiguous observation of the subcycle ionization bursts in sequential strong-field double ionization of H_{2} and their disentanglement in molecular frame photoelectron angular distributions. This observation was made possible by the use of few-cycle laser pulses with a known carrier-envelope phase, in combination with multiparticle coincidence momentum imaging. The approach demonstrated here will allow sampling of the intramolecular electron dynamics and the investigation of charge-state-specific Coulomb distortions on emitted electrons in polyatomic molecules.

4.
Phys Rev Lett ; 123(26): 263201, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31951453

ABSTRACT

We introduce and experimentally demonstrate a method where the two intrinsic timescales of a molecule, the slow nuclear motion and the fast electronic motion, are simultaneously measured in a photoelectron photoion coincidence experiment. In our experiment, elliptically polarized, 750 nm, 4.5 fs laser pulses were focused to an intensity of 9×10^{14} W/cm^{2} onto H_{2}. Using coincidence imaging, we directly observe the nuclear wave packet evolving on the 1sσ_{g} state of H_{2}^{+} during its first round-trip with attosecond temporal and picometer spatial resolution. The demonstrated method should enable insight into the first few femtoseconds of the vibronic dynamics of ionization-induced unimolecular reactions of larger molecules.

5.
J Chem Phys ; 144(2): 024306, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26772570

ABSTRACT

We visualize and control molecular dynamics taking place on intermediately populated states during different sequential double ionization pathways of CO2 using a sequence of two delayed laser pulses which exhibit different peak intensities. Measured yields of CO2 (2+) and of fragment pairs CO(+)/O(+) as a function of delay between the two pulses are weakly modulated by various vibronic dynamics taking place in CO2 (+). By Fourier analysis of the modulations we identify the dynamics and show that they can be assigned to merely two double ionization pathways. We demonstrate that by reversing the sequence of the two pulses it becomes possible to control the pathway which is taken across CO2 (+) towards the final state in CO2 (2+). A comparison between the yields of CO2 (2+) and CO(+)/O(+) reveals that the modulating vibronic dynamics oscillate out-of-phase with each other, thus opening up opportunities for strong-field fragmentation control on extended time scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...