Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Carcinog ; 6: 9, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17477881

ABSTRACT

BACKGROUND: Loss of BIN1 tumor suppressor expression is abundant in human cancer and its frequency exceeds that of genetic alterations, suggesting the role of epigenetic regulators (DNA methylation). BIN1 re-expression in the DU145 prostate cancer cell line after 5-aza-2'-deoxycytidine treatment was recently reported but no methylation of the BIN1 promoter CpG island was found in DU145. METHODS: Methylation-sensitive arbitrarily-primed PCR was used to detect genomic loci abnormally methylated in breast cancer. BIN1 CpG island fragment was identified among the differentially methylated loci as a result of direct sequencing of the methylation-sensitive arbitrarily-primed PCR product and subsequent BLAST alliance. BIN1 CpG island cancer related methylation in breast and prostate cancers was confirmed by bisulphite sequencing and its methylation frequency was evaluated by methylation sensitive PCR. Loss of heterozygosity analysis of the BIN1 region was performed with two introgenic and one closely adjacent extragenic microsatellite markers.BIN1 expression was evaluated by real-time RT-PCR. RESULTS: We have identified a 3'-part of BIN1 promoter CpG island among the genomic loci abnormally methylated in breast cancer. The fragment proved to be methylated in 18/99 (18%) and 4/46 (9%) breast and prostate tumors, correspondingly, as well as in MCF7 and T47D breast cancer cell lines, but was never methylated in normal tissues and lymphocytes as well as in DU145 and LNCaP prostate cancer cell lines. The 5'-part of the CpG island revealed no methylation in all samples tested. BIN1 expression losses were detected in MCF7 and T47D cells and were characteristic of primary breast tumors (10/13; 77%), while loss of heterozygosity was a rare event in tissue samples (2/22 informative cases; 9%) and was ruled out for MCF7. CONCLUSION: BIN1 promoter CpG island is composed of two parts differing drastically in the methylation patterns in cancer. This appears to be a common feature of cancer related genes and demands further functional significance exploration. Although we have found no evidence of the functional role of such a non-core methylation in BIN1 expression regulation, our data do not altogether rule this possibility out.

2.
Russ J Immunol ; 7(1): 34-40, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12687264

ABSTRACT

Alpha2-macroglobulin (a2M) secreted by tissue macrophages and fibroblasts functions in the environment of extracellular matrix macromolecules. We supposed that it may interact with these molecules and change the properties of extracellular matrix. Modified variant of ELISA was used to prove the direct binding of human a2M to collagen. Native and transformed by plasmin a2M, as well as plasmin, used as the control, were labeled by biotin. It has been found that the transformed, but not the native a2M form binds to type I collagen molecules: K(d)=(1.168 +/- 1.14) x 10(-11) M. The data obtained give a strong evidence of high power of the interaction between a2M and type I collagen: practically no reverse dissociation may be seen for such a binding. The modification of three-dimensional collagen matrix by binding to the transformed a2M resulted in the enhancement of migration of macrophages, carrying the receptors for a2M, but not splenocytes that lack for such receptors. Our results allow to suggest that a2M may be one of the components of extracellular matrix, and may change the properties of microenvironment for immunocompetent cells during the processes of inflammation, reparation and tumor invasion.


Subject(s)
Cell Movement/immunology , Collagen Type I/immunology , Macrophages/immunology , alpha-Macroglobulins/immunology , Cells, Immobilized/immunology , Collagen Type I/metabolism , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Fibrinolysin/metabolism , Humans , Macrophage Activation/immunology , Macrophages/cytology , Macrophages/physiology , Protein Binding , Spleen/cytology , Spleen/immunology , alpha-Macroglobulins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...