Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Front Physiol ; 15: 1375929, 2024.
Article in English | MEDLINE | ID: mdl-38966226

ABSTRACT

Head-down bed rest (HDBR) is one of the models of the physiological effects of weightlessness used, among other things, to assess the effect of hypokinesia on the physiological systems of the human body and, first of all, on the cardiovascular system. The aim of the work was to study the effect of 21 days of HDBR factors on the cardiovascular system based on blood proteomic profile data. It was revealed that HDBR conditions led to an increase in the levels of proteins of the complement and the coagulation cascade systems, platelet degranulation, fibrinolysis, acute phase proteins, post-translational modification of proteins, retinol-binding protein 4 (RBP4), apolipoprotein B, which are associated with cardiovascular diseases, and other proteins that affect the functions of endothelial cells. Blood levels of proteins involved in cytoskeletal remodelling, oxygen transport, heme catabolism, etc. have been shown to decrease during HDBR.

2.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791371

ABSTRACT

The process of aging is intimately linked to alterations at the tissue and cellular levels. Currently, the role of senescent cells in the tissue microenvironment is still being investigated. Despite common characteristics, different cell populations undergo distinctive morphofunctional changes during senescence. Mesenchymal stem cells (MSCs) play a pivotal role in maintaining tissue homeostasis. A multitude of studies have examined alterations in the cytokine profile that determine their regulatory function. The extracellular matrix (ECM) of MSCs is a less studied aspect of their biology. It has been shown to modulate the activity of neighboring cells. Therefore, investigating age-related changes in the MSC matrisome is crucial for understanding the mechanisms of tissue niche ageing. This study conducted a broad proteomic analysis of the matrisome of separated fractions of senescent MSCs, including the ECM, conditioned medium (CM), and cell lysate. This is the first time such an analysis has been conducted. It has been established that there is a shift in production towards regulatory molecules and a significant downregulation of the main structural and adhesion proteins of the ECM, particularly collagens, fibulins, and fibrilins. Additionally, a decrease in the levels of cathepsins, galectins, S100 proteins, and other proteins with cytoprotective, anti-inflammatory, and antifibrotic properties has been observed. However, the level of inflammatory proteins and regulators of profibrotic pathways increases. Additionally, there is an upregulation of proteins that can directly cause prosenescent effects on microenvironmental cells (SERPINE1, THBS1, and GDF15). These changes confirm that senescent MSCs can have a negative impact on other cells in the tissue niche, not only through cytokine signals but also through the remodeled ECM.


Subject(s)
Cellular Senescence , Extracellular Matrix , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Extracellular Matrix/metabolism , Proteomics/methods , Proteome/metabolism , Extracellular Matrix Proteins/metabolism , Cells, Cultured , Culture Media, Conditioned/pharmacology
3.
Biol Reprod ; 110(6): 1077-1085, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38641547

ABSTRACT

Volumetric data provide unprecedented structural insight to the reproductive tract and add vital anatomical context to the relationships between organs. The morphology of the female reproductive tract in non-avian reptiles varies between species, corresponding to a broad range of reproductive modes and providing valuable insight to comparative investigations of reproductive anatomy. However, reproductive studies in reptilian models, such as the brown anole studied here, have historically relied on histological methods to understand the anatomy. While these methods are highly effective for characterizing the cell types present in each organ, histological methods lose the 3D relationships between images and leave the architecture of the organ system poorly understood. We present the first comprehensive volumetric analyses of the female brown anole reproductive tract using two non-invasive, non-destructive imaging modalities: micro-computed tomography (microCT) and optical coherence tomography (OCT). Both are specialized imaging technologies that facilitate high-throughput imaging and preserve three-dimensional information. This study represents the first time that microCT has been used to study all reproductive organs in this species and the very first time that OCT has been applied to this species. We show how the non-destructive volumetric imaging provided by each modality reveals anatomical context including orientation and relationships between reproductive organs of the anole lizard. In addition to broad patterns of morphology, both imaging modalities provide the high resolution necessary to capture details and key anatomical features of each organ. We demonstrate that classic histological features can be appreciated within whole-organ architecture in volumetric imaging using microCT and OCT, providing the complementary information necessary to understand the relationships between tissues and organs in the reproductive system. This side-by-side imaging analysis using microCT and OCT allows us to evaluate the specific advantages and limitations of these two methods for the female reptile reproductive system.


Subject(s)
Genitalia, Female , Lizards , Tomography, Optical Coherence , X-Ray Microtomography , Animals , Female , X-Ray Microtomography/methods , X-Ray Microtomography/veterinary , Tomography, Optical Coherence/methods , Tomography, Optical Coherence/veterinary , Lizards/anatomy & histology , Genitalia, Female/diagnostic imaging , Genitalia, Female/anatomy & histology , Imaging, Three-Dimensional/methods , Imaging, Three-Dimensional/veterinary
4.
Biol Reprod ; 110(2): 365-376, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-37971359

ABSTRACT

The implementation of live imaging in reproductive research is crucial for studying the physiological dynamics. Sperm transport is a highly dynamic process regulated by tubular contractions and luminal flows within the male reproductive tract. However, due to the lack of imaging techniques to capture these dynamics in vivo, there is little information on the physiological and biomechanical regulation of sperm transport through the male reproductive tract. Here, we present a functional in vivo imaging approach using optical coherence tomography, enabling live, label-free, depth-resolved, three-dimensional, high-resolution visualization of the mouse testis and epididymis. With this approach, we spatiotemporally captured tubular contractility in mouse testis and epididymis, as well as microstructures of these reproductive organs. Our findings demonstrated that the contraction frequency varies significantly depending on the epididymal regions, suggesting the spatial regulation of epididymal contractility. Furthermore, we implemented quantitative measurements of the contraction wave and luminal transport through the epididymal duct, revealing the physiological dynamics within the male reproductive tract. The results show that the contraction wave propagates along the epididymal duct and the wave propagation velocity was estimated in vivo. In conclusion, this is the first study to develop in vivo dynamic volumetric imaging of the male reproductive tract, which allows for quantitative analysis of the dynamics associated with sperm transport. This study sets a platform for various studies investigating normal and abnormal male reproductive physiology as well as the pharmacological and environmental effects on reproductive functions in mouse models, ultimately contributing to a comprehensive understanding of male reproductive disorders.


Subject(s)
Epididymis , Testis , Mice , Animals , Male , Epididymis/diagnostic imaging , Epididymis/physiology , Testis/diagnostic imaging , Tomography, Optical Coherence , Semen , Spermatozoa
5.
Molecules ; 28(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37110557

ABSTRACT

Glomerulopathies with nephrotic syndrome that are resistant to therapy often progress to end-stage chronic kidney disease (CKD) and require timely and accurate diagnosis. Targeted quantitative urine proteome analysis by mass spectrometry (MS) with multiple-reaction monitoring (MRM) is a promising tool for early CKD diagnostics that could replace the invasive biopsy procedure. However, there are few studies regarding the development of highly multiplexed MRM assays for urine proteome analysis, and the two MRM assays for urine proteomics described so far demonstrate very low consistency. Thus, the further development of targeted urine proteome assays for CKD is actual task. Herein, a BAK270 MRM assay previously validated for blood plasma protein analysis was adapted for urine-targeted proteomics. Because proteinuria associated with renal impairment is usually associated with an increased diversity of plasma proteins being present in urine, the use of this panel was appropriate. Another advantage of the BAK270 MRM assay is that it includes 35 potential CKD markers described previously. Targeted LC-MRM MS analysis was performed for 69 urine samples from 46 CKD patients and 23 healthy controls, revealing 138 proteins that were found in ≥2/3 of the samples from at least one of the groups. The results obtained confirm 31 previously proposed CKD markers. Combination of MRM analysis with machine learning for data processing was performed. As a result, a highly accurate classifier was developed (AUC = 0.99) that enables distinguishing between mild and severe glomerulopathies based on the assessment of only three urine proteins (GPX3, PLMN, and A1AT or SHBG).


Subject(s)
Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Proteome , Mass Spectrometry/methods , Proteinuria/diagnosis , Blood Proteins , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/urine , Biomarkers
6.
Biomed Opt Express ; 14(1): 163-181, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36698661

ABSTRACT

Dynamic imaging of the beating embryonic heart in 3D is critical for understanding cardiac development and defects. Optical coherence tomography (OCT) plays an important role in embryonic heart imaging with its unique imaging scale and label-free contrasts. In particular, 4D (3D + time) OCT imaging enabled biomechanical analysis of the developing heart in various animal models. While ultrafast OCT systems allow for direct volumetric imaging of the beating heart, the imaging speed remains limited, leading to an image quality inferior to that produced by post-acquisition synchronization. As OCT systems become increasingly available to a wide range of biomedical researchers, a more accessible 4D reconstruction method is required to enable the broader application of OCT in the dynamic, volumetric assessment of embryonic heartbeat. Here, we report an open-source, highly efficient, post-acquisition synchronization method for 4D cardiodynamic and hemodynamic imaging of the mouse embryonic heart. Relying on the difference between images to characterize heart wall movements, the method provides good sensitivity to the cardiac activity when aligning heartbeat phases, even at early stages when the heart wall occupies only a small number of pixels. The method works with a densely sampled single 3D data acquisition, which, unlike the B-M scans required by other methods, is readily available in most commercial OCT systems. Compared with an existing approach for the mouse embryonic heart, this method shows superior reconstruction quality. We present the robustness of the method through results from different embryos with distinct heart rates, ranging from 1.24 Hz to 2.13 Hz. Since the alignment process operates on a 1D signal, the method has a high efficiency, featuring sub-second alignment time while utilizing ∼100% of the original image files. This allows us to achieve repeated, dual-contrast imaging of mouse embryonic heart development. This new, open-source method could facilitate research using OCT to study early cardiogenesis.

7.
Mol Reprod Dev ; 90(1): 3-13, 2023 01.
Article in English | MEDLINE | ID: mdl-36574640

ABSTRACT

The biological events associated with mammalian reproductive processes are highly dynamic and tightly regulated by molecular, genetic, and biomechanical factors. Implementation of live imaging in reproductive research is vital for the advancement of our understanding of normal reproductive physiology and for improving the management of reproductive disorders. Optical coherence tomography (OCT) is emerging as a promising tool for dynamic volumetric imaging of various reproductive processes in mice and other animal models. In this review, we summarize recent studies employing OCT-based approaches toward the investigation of reproductive processes in both, males and females. We describe how OCT can be applied to study structural features of the male reproductive system and sperm transport through the male reproductive tract. We review OCT applications for in vitro and dynamic in vivo imaging of the female reproductive system, staging and tracking of oocytes and embryos, and investigations of the oocyte/embryo transport through the oviduct. We describe how the functional OCT approach can be applied to the analysis of cilia dynamics within the male and female reproductive systems. We also discuss the areas of research, where OCT could find potential applications to progress our understanding of normal reproductive physiology and reproductive disorders.


Subject(s)
Semen , Tomography, Optical Coherence , Humans , Male , Female , Animals , Mice , Tomography, Optical Coherence/methods , Reproduction , Fallopian Tubes , Oviducts/physiology , Mammals
8.
Reproduction ; 165(2): R25-R37, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36318634

ABSTRACT

In brief: In vivo imaging of gametes and embryos in the oviduct enables new studies of the native processes that lead to fertilization and pregnancy. This review article discusses recent advancements in the in vivo imaging methods and insights which contribute to understanding the oviductal function. Abstract: Understanding the physiological dynamics of gametes and embryos in the fallopian tube (oviduct) has significant implications for managing reproductive disorders and improving assisted reproductive technologies. Recent advancements in imaging of the mouse oviduct in vivo uncovered fascinating dynamics of gametes and embryos in their native states. These new imaging approaches and observations are bringing exciting momentum to uncover the otherwise-hidden processes orchestrating fertilization and pregnancy. For mechanistic investigations, in vivo imaging in genetic mouse models enables dynamic phenotyping of gene functions in the reproductive process. Here, we review these imaging methods, discuss insights recently revealed by in vivo imaging, and comment on emerging directions, aiming to stimulate new in vivo studies of reproductive dynamics.


Subject(s)
Fallopian Tubes , Oviducts , Pregnancy , Humans , Female , Animals , Mice , Fallopian Tubes/diagnostic imaging , Fallopian Tubes/physiology , Oviducts/physiology , Germ Cells , Reproduction , Diagnostic Imaging
9.
Optica ; 10(11): 1439-1451, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38665775

ABSTRACT

Motile cilia are dynamic hair-like structures covering epithelial surfaces in multiple organs. The periodic coordinated beating of cilia creates waves propagating along the surface, known as the metachronal waves, which transport fluids and mucus along the epithelium. Motile ciliopathies result from disrupted coordinated cilia beating and are associated with serious clinical complications, including reproductive disorders. Despite the recognized clinical significance, research of cilia dynamics is extremely limited. Here, we present quantitative imaging of cilia metachronal waves volumetrically through tissue layers using dynamic optical coherence tomography (OCT). Our method relies on spatiotemporal mapping of the phase of intensity fluctuations in OCT images caused by the ciliary beating. We validated our new method ex vivo and implemented it in vivo to visualize cilia metachronal wave propagation within the mouse fallopian tube. This method can be extended to the assessment of physiological cilia function and ciliary dyskinesias in various organ systems, contributing to better management of pathologies associated with motile ciliopathies.

11.
J Opt Soc Am A Opt Image Sci Vis ; 39(5): ED3-ED4, 2022 May 01.
Article in English | MEDLINE | ID: mdl-36215438

ABSTRACT

JOSA A Editor-in-Chief, Olga Korotkova, Feature Editor, Johannes Courtial, and members of the 2021 Emerging Researcher Best Paper Prize Committee announce the recipient of the 2021 prize for the best paper published by an emerging researcher in the Journal.


Subject(s)
Awards and Prizes
12.
Front Cell Dev Biol ; 10: 1000237, 2022.
Article in English | MEDLINE | ID: mdl-36158219

ABSTRACT

With the explosion of gene editing tools in recent years, there has been a much greater demand for mouse embryo phenotyping, and traditional methods such as histology and histochemistry experienced a methodological renaissance as they became the principal tools for phenotyping. However, it is important to explore alternative phenotyping options to maximize time and resources and implement volumetric structural analysis for enhanced investigation of phenotypes. Cardiovascular phenotyping, in particular, is important to perform in vivo due to the dramatic structural and functional changes that occur in heart development over relatively short periods of time. Optical coherence tomography (OCT) is one of the most exciting advanced imaging techniques emerging within the field of developmental biology, and this review provides a summary of how it is currently being implemented in mouse embryo investigations and phenotyping. This review aims to provide an understanding of the approaches used in optical coherence tomography and how they can be applied in embryology and developmental biology, with the overall aim of bridging the gap between biology and technology.

13.
PNAS Nexus ; 1(4): pgac155, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36120506

ABSTRACT

The uterine myometrium expands and maintains contractile quiescence before parturition. While the steroid hormone progesterone blocks labor, the role of progesterone signaling in myometrial expansion remains elusive. This study investigated the myometrial functions of the progesterone receptor, PGR. Pgr ablation in mouse smooth muscle leads to subfertility, oviductal embryo retention, and impaired myometrial adaptation to pregnancy. While gross morphology between mutant and control uteri are comparable, mutant uteri manifest a decrease of 76.6% oxytocin-stimulated contractility in a pseudopregnant context with a reduced expression of intracellular calcium homeostasis genes including Pde5a and Plcb4. At mid-pregnancy, the mutant myometrium exhibits discontinuous myofibers and disarrayed extracellular matrix at the conceptus site. Transcriptome of the mutant mid-pregnant uterine wall manifests altered muscle and extracellular matrix profiles and resembles that of late-pregnancy control tissues. A survey of PGR occupancy, H3K27ac histone marks, and chromatin looping annotates cis-acting elements that may direct gene expression of mid-pregnancy uteri for uterine remodeling. Further analyses suggest that major muscle and matrix regulators Myocd and Ccn2 and smooth muscle building block genes are PGR direct downstream targets. Cataloging enhancers that are topologically associated with progesterone downstream genes reveals distinctive patterns of transcription factor binding motifs in groups of enhancers and identifies potential regulatory partners of PGR outside its occupying sites. Finally, conserved correlations are found between estimated PGR activities and RNA abundance of downstream muscle and matrix genes in human myometrial tissues. In summary, PGR is pivotal to direct the molecular program for the uterus to remodel and support pregnancy.

14.
J Cardiovasc Dev Dis ; 9(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36005431

ABSTRACT

In vertebrates, the coordinated beat of the early heart tube drives cardiogenesis and supports embryonic growth. How the heart pumps at this valveless stage marks a fascinating problem that is of vital significance for understanding cardiac development and defects. The developing heart achieves its function at the same time as continuous and dramatic morphological changes, which in turn modify its pumping dynamics. The beauty of this muti-time-scale process also highlights its complexity that requires interdisciplinary approaches to study. High-resolution optical imaging, particularly fast, four-dimensional (4D) imaging, plays a critical role in revealing the process of pumping, instructing numerical modeling, and enabling biomechanical analyses. In this review, we aim to connect the investigation of valveless pumping mechanisms with the recent advancements in embryonic cardiodynamic imaging, facilitating interactions between these two areas of study, in hopes of encouraging and motivating innovative work to further understand the early heartbeat.

15.
Biomed Opt Express ; 13(6): 3672-3684, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35781970

ABSTRACT

Spermatozoa transport within the male reproductive tract is a highly dynamic and biologically important reproductive event. However, due to the lack of live volumetric imaging technologies and quantitative measurements, there is little information on the dynamic aspect and regulation of this process. Here, we presented ex vivo dynamic volumetric imaging of the mouse testis, efferent duct, epididymis, and vas deferens at a micro-scale spatial resolution with optical coherence tomography (OCT). Micro computed tomography imaging is presented as a reference for the proposed OCT imaging. Application of functional OCT analysis allowed for 3D mapping of the cilia beat frequency in the efferent duct, which volumetrically visualized the spatial distribution of the ciliated cells and corresponding ciliary activities. Potentially these analyses could be expanded to in vivo settings through intravital approach. In summary, this study demonstrated that OCT has a great potential to investigate the microstructure and dynamics, such as cilia beating, muscle contractions, and sperm transport, within the male reproductive tract.

16.
BMC Biol ; 20(1): 161, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831855

ABSTRACT

BACKGROUND: Ubiquitination is a post-translational modification required for a number of physiological functions regulating protein homeostasis, such as protein degradation. The endoplasmic reticulum (ER) quality control system recognizes and degrades proteins no longer needed in the ER through the ubiquitin-proteasome pathway. E2 and E3 enzymes containing a transmembrane domain have been shown to function in ER quality control. The ER transmembrane protein UBE2J1 is a E2 ubiquitin-conjugating enzyme reported to be essential for spermiogenesis at the elongating spermatid stage. Spermatids from Ube2j1 KO male mice are believed to have defects in the dislocation step of ER quality control. However, associated E3 ubiquitin-protein ligases that function during spermatogenesis remain unknown. RESULTS: We identified four evolutionarily conserved testis-specific E3 ubiquitin-protein ligases [RING finger protein 133 (Rnf133); RING finger protein 148 (Rnf148); RING finger protein 151 (Rnf151); and Zinc finger SWIM-type containing 2 (Zswim2)]. Using the CRISPR/Cas9 system, we generated and analyzed the fertility of mutant mice with null alleles for each of these E3-encoding genes, as well as double and triple knockout (KO) mice. Male fertility, male reproductive organ, and sperm-associated parameters were analyzed in detail. Fecundity remained largely unaffected in Rnf148, Rnf151, and Zswim2 KO males; however, Rnf133 KO males displayed severe subfertility. Additionally, Rnf133 KO sperm exhibited abnormal morphology and reduced motility. Ultrastructural analysis demonstrated that cytoplasmic droplets were retained in Rnf133 KO spermatozoa. Although Rnf133 and Rnf148 encode paralogous genes that are chromosomally linked and encode putative ER transmembrane E3 ubiquitin-protein ligases based on their protein structures, there was limited functional redundancy of these proteins. In addition, we identified UBE2J1 as an E2 ubiquitin-conjugating protein that interacts with RNF133. CONCLUSIONS: Our studies reveal that RNF133 is a testis-expressed E3 ubiquitin-protein ligase that plays a critical role for sperm function during spermiogenesis. Based on the presence of a transmembrane domain in RNF133 and its interaction with the ER containing E2 protein UBE2J1, we hypothesize that these ubiquitin-regulatory proteins function together in ER quality control during spermatogenesis.


Subject(s)
Testis , Ubiquitin-Protein Ligases/metabolism , Animals , Fertility , Male , Mice , Semen/metabolism , Testis/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
17.
Front Physiol ; 12: 760875, 2021.
Article in English | MEDLINE | ID: mdl-34867466

ABSTRACT

The study presents the results of evaluating the changes in the concentrations of blood plasma proteins associated with heart rate variability (HRV) in cosmonauts who have completed space missions lasting about 6months. The concentrations of 125 proteins were quantified in biological samples of the cosmonauts' blood plasma. The subgroups of proteins associated with the physiological processes of the HRV autonomic regulation were identified using bioinformatic resources (Immunoglobulin heavy constant mu, Complement C1q subcomponent subunit C, Plasma serine protease inhibitor, Protein-72kDa type IV collagenase, Fibulin-1, Immunoglobulin lambda constant 3). The concentration of these proteins in the blood plasma before the flight, and the dynamics of concentration changes on the 1st and 7th days of the post-flight rehabilitation period differed in the groups of cosmonauts with a predominance of sympathetic or parasympathetic modulating autonomous influences. The dynamics of changes in the concentrations of the identified set of proteins reveal that in cosmonauts with a predominance of sympathetic modulating influences, the mechanisms of autonomic regulation are exposed to significant stress in the recovery period immediately after the completion of the space mission, compared with the cosmonauts with a predominance of parasympathetic modulating influences.

18.
Opt Lett ; 46(19): 4742-4744, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34598188

ABSTRACT

In this work, we present an ultra-fast line-field optical coherence elastography system (LF-OCE) with an 11.5 MHz equivalent A-line rate. The system was composed of a line-field spectral domain optical coherence tomography system based on a supercontinuum light source, Michelson-type interferometer, and a high-speed 2D spectrometer. The system performed ultra-fast imaging of elastic waves in tissue-mimicking phantoms of various elasticities. The results corroborated well with mechanical testing. Following validation, LF-OCE measurements were made in in situ and in in vivo rabbit corneas under various conditions. The results show the capability of the system to rapidly image elastic waves in tissues.


Subject(s)
Elasticity Imaging Techniques , Animals , Cornea , Elasticity , Phantoms, Imaging , Rabbits , Tomography, Optical Coherence
19.
Cells ; 10(9)2021 08 27.
Article in English | MEDLINE | ID: mdl-34571874

ABSTRACT

Gravity is fundamental factor determining all processes of development and vital activity on Earth. During evolution, a complex mechanism of response to gravity alterations was formed in multicellular organisms. It includes the "gravisensors" in extracellular and intracellular spaces. Inside the cells, the cytoskeleton molecules are the principal gravity-sensitive structures, and outside the cells these are extracellular matrix (ECM) components. The cooperation between the intracellular and extracellular compartments is implemented through specialized protein structures, integrins. The gravity-sensitive complex is a kind of molecular hub that coordinates the functions of various tissues and organs in the gravitational environment. The functioning of this system is of particular importance under extremal conditions, such as spaceflight microgravity. This review covers the current understanding of ECM and associated molecules as the matrisome, the features of the above components in connective tissues, and the role of the latter in the cell and tissue responses to the gravity alterations. Special attention is paid to contemporary methodological approaches to the matrisome composition analysis under real space flights and ground-based simulation of its effects on Earth.


Subject(s)
Extracellular Matrix/physiology , Animals , Gravity, Altered , Humans , Space Flight/methods , Weightlessness
20.
Cell Rep ; 36(2): 109382, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260920

ABSTRACT

Developmental biologists have always relied on imaging to shed light on dynamic cellular events. However, processes such as mammalian fertilization and embryogenesis are generally inaccessible for direct imaging. In consequence, how the oviduct (fallopian tube) facilitates the transport of gametes and preimplantation embryos continues to be unanswered. Here we present a combination of intravital window and optical coherence tomography for dynamic, volumetric, in vivo imaging of oocytes and embryos as they are transported through the mouse oviduct. We observed location-dependent circling, oscillating, and long-distance bi-directional movements of oocytes and embryos that suggest regulatory mechanisms driving transport and question established views in the field. This in vivo imaging approach can be combined with a variety of genetic and pharmacological manipulations for live functional analysis, bringing the potential to investigate reproductive physiology in its native state.


Subject(s)
Embryo, Mammalian/diagnostic imaging , Imaging, Three-Dimensional , Oocytes/cytology , Oviducts/diagnostic imaging , Animals , Blastocyst , Cumulus Cells/cytology , Female , Mice , Models, Biological , Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...