Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 339: 111951, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072331

ABSTRACT

Sudden Death Syndrome (SDS) caused by Fusarium tucumaniae is a significant threat to soybean production in Argentina. This study assessed the susceptibility of SY 3 × 7 and SPS 4 × 4 soybeans cultivars to F. tucumaniae and studied changes in root isoflavone levels after infection. Additionally, the biocontrol potential of plant-growth promoting rhizobacteria (PGPR) against SDS was also examined. Our results demonstrated that the SY 3 × 7 cultivar exhibited higher disease severity and total fresh weight loss than SPS 4 × 4. Both cultivars showed induction of daidzein, glycitein, and genistein in response to infection, with the partially resistant cultivar displaying significantly higher daidzein levels than the susceptible cultivar at 14 days post infection (dpi) (2.74 vs 2.17-fold), declining to a lesser extent at 23 dpi (0.94 vs 0.35-fold, respectively). However, daidzein was not able to inhibit F. tucumaniae growth in in vitro assays probably due to its conversion to an isoflavonoid phytoalexin which would ultimately be an effective fungal inhibitor. Furthermore, the PGPR bacterium Bacillus amyloliquefaciens BNM340 displayed antagonistic activity against F. tucumaniae and reduced SDS symptoms in infected plants. This study sheds light on the varying susceptibility of soybean cultivars to SDS, offers insights into isoflavone responses during infection, and demonstrates the potential of PGPR as a biocontrol strategy for SDS management, providing ways for disease control in soybean production.


Subject(s)
Fusarium , Isoflavones , Glycine max , Fusarium/physiology , Death, Sudden , Argentina , Plant Diseases/prevention & control , Plant Diseases/microbiology
2.
Biotechnol Rep (Amst) ; 28: e00546, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33204658

ABSTRACT

Enzymes from cold-adapted microorganisms are of high interest to industries due to their high activity at low and mild temperatures, which makes them suitable for their use in several processes that either require a supply of exogenous energy or involve the use of heat labile products. In this work, the protease production by the strain Rhodotorula mucilaginosa CBMAI 1528, previously isolated from the Antarctic continent, was optimized, and the purified enzyme analyzed. It was found that protease production was dependent on culture medium composition and growth temperature, being 20 °C and a culture medium containing both glucose and casein peptone (20 and 10 g/L, respectively) the optimal growing conditions in batch as well as in bioreactor. Moreover, mass spectrometry analysis revealed that the enzyme under study has a 100 % sequence identity with the deduced amino acid sequence of a putative aspartic protease from Rhodotorula sp. JG-1b (protein ID: KWU42276.1). This result was confirmed by the decrease of 95 % proteolytic activity by pepstatin A, a specific inhibitor of aspartic proteases. We propose that the enzyme reported here could be Rodothorulapepsin, a protein characterized in 1972 that did not have an associated sequence to date and has been classified as an orphan enzyme.

3.
Crit Rev Biotechnol ; 38(4): 600-619, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29228814

ABSTRACT

Antarctica is the coldest, windiest, and driest continent on Earth. In this sense, microorganisms that inhabit Antarctica environments have to be adapted to harsh conditions. Fungal strains affiliated with Ascomycota and Basidiomycota phyla have been recovered from terrestrial and marine Antarctic samples. They have been used for the bioprospecting of molecules, such as enzymes. Many reports have shown that these microorganisms produce cold-adapted enzymes at low or mild temperatures, including hydrolases (e.g. α-amylase, cellulase, chitinase, glucosidase, invertase, lipase, pectinase, phytase, protease, subtilase, tannase, and xylanase) and oxidoreductases (laccase and superoxide dismutase). Most of these enzymes are extracellular and their production in the laboratory has been carried out mainly under submerged culture conditions. Several studies showed that the cold-adapted enzymes exhibit a wide range in optimal pH (1.0-9.0) and temperature (10.0-70.0 °C). A myriad of methods have been applied for cold-adapted enzyme purification, resulting in purification factors and yields ranging from 1.70 to 1568.00-fold and 0.60 to 86.20%, respectively. Additionally, some fungal cold-adapted enzymes have been cloned and expressed in host organisms. Considering the enzyme-producing ability of microorganisms and the properties of cold-adapted enzymes, fungi recovered from Antarctic environments could be a prolific genetic resource for biotechnological processes (industrial and environmental) carried out at low or mild temperatures.


Subject(s)
Enzymes/metabolism , Fungal Proteins/metabolism , Fungi/metabolism , Animals , Antarctic Regions , Cold Temperature , Humans
4.
Fungal Biol ; 119(11): 1129-1136, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26466885

ABSTRACT

The production, purification, and characterization of an extracellular protease released by Rhodotorula mucilaginosa L7 were evaluated in this study. This strain was isolated from an Antarctic marine alga and previously selected among others based on the capacity to produce the highest extracellular proteolytic activity in preliminary tests. R. mucilaginosa L7 was grown in Saboraud-dextrose medium at 25 °C, and the cell growth, pH of the medium, extracellular protease production and the glucose and protein consumption were determined as a function of time. The protease was then purified, and the effects of pH, temperature, and salt concentration on the catalytic activity and enzyme stability were determined. Enzyme production started at the beginning of the exponential phase of growth and reached a maximum after 48 h, which was accompanied by a decrease in the pH as well as reductions of the protein and glucose concentrations in the medium. The purified protease presented optimal catalytic activity at pH 5.0 and 50 °C. Finally, the enzyme was stable in the presence of high concentrations of NaCl. These characteristics are of interest for future studies and may lead to potential biotechnological applications that require enzyme activity and stability under acidic conditions and/or high salt concentrations.


Subject(s)
Peptide Hydrolases/isolation & purification , Peptide Hydrolases/metabolism , Rhodotorula/enzymology , Antarctic Regions , Aquatic Organisms/enzymology , Culture Media/chemistry , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/metabolism , Enzyme Stability , Glucose/metabolism , Hydrogen-Ion Concentration , Microscopy , Molecular Weight , Peptide Hydrolases/chemistry , Proteins/metabolism , Rhodotorula/cytology , Rhodotorula/growth & development , Sodium Chloride/metabolism , Temperature
5.
J Exp Bot ; 66(11): 3019-26, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25465032

ABSTRACT

The mismatch repair (MMR) system maintains genome integrity by correcting replication-associated errors and inhibiting recombination between divergent DNA sequences. The basic features of the pathway have been highly conserved throughout evolution, although the nature and number of the proteins involved in this DNA repair system vary among organisms. Plants have an extra mismatch recognition protein, MutSγ, which is a heterodimer: MSH2-MSH7. To further understand the role of MSH7 in vivo, we present data from this protein in Arabidopsis thaliana. First, we generated transgenic plants that express ß-glucuronidase (GUS) under the control of the MSH7 promoter. Histochemical staining of the transgenic plants indicated that MSH7 is preferentially expressed in proliferating tissues. Then, we identified msh7 T-DNA insertion mutants. Plants deficient in MSH7 show increased levels of UV-B-induced cyclobutane pyrimidine dimers relative to wild-type (WT) plants. Consistent with the patterns of MSH7 expression, we next analysed the role of the protein during somatic and meiotic recombination. The frequency of somatic recombination between homologous or homeologous repeats (divergence level of 1.6%) was monitored using a previously described GUS recombination reporter assay. Disruption of MSH7 has no effect on the rates of somatic homologous or homeologous recombination under control conditions or after UV-B exposure. However, the rate of meiotic recombination between two genetically linked seed-specific fluorescent markers was 97% higher in msh7 than in WT plants. Taken together, these results suggest that MSH7 is involved in UV-B-induced DNA damage recognition and in controlling meiotic recombination.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , DNA Repair/genetics , Recombination, Genetic , Arabidopsis/physiology , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , DNA Damage/radiation effects , Flowers/genetics , Flowers/physiology , Flowers/radiation effects , Genes, Reporter , Mutagenesis, Insertional , Plants, Genetically Modified , Pyrimidine Dimers/radiation effects , Seedlings/genetics , Seedlings/physiology , Seedlings/radiation effects , Seeds/genetics , Seeds/physiology , Seeds/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...