Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mutagenesis ; 33(2): 129-135, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29378067

ABSTRACT

Anthracosilicosis (AS), a prevalent form of pneumoconiosis among coal miners, results from the accumulation of carbon and silica in the lungs from inhaled coal dust. This study investigated genotoxic effects and certain cytokine genes polymorphic variants in Russian coal miners with АS. Peripheral leukocytes were sampled from 129 patients with AS confirmed by X-ray and tissue biopsy and from 164 asymptomatic coal miners. Four single-nucleotide polymorphisms were genotyped in the extracted DNA samples: IL1ß T-511C (rs16944), IL6 C-174G (rs1800795), IL12b A1188C (rs3212227) and VEGFA C634G (rs2010963). Genotoxic effects were assessed by the analysis of chromosome aberrations in cultured peripheral lymphocytes. The mean frequency of chromatid-type aberrations and chromosome-type aberrations, namely, chromatid-type breaks and dicentric chromosomes, was found to be higher in AS patients [3.70 (95% confidence interval {CI}, 3.29-4.10) and 0.28 (95% CI, 0.17-0.38)] compared to the control group [2.41 (95% CI, 2.00-2.82) and 0.09 (95% CI, 0.03-0.15)], respectively. IL1ß gene T/T genotype (rs16944) was associated with AS [17.83% in AS patients against 4.35% in healthy donors, odds ratio = 4.77 (1.88-12.15), P < 0.01]. A significant increase in the level of certain chromosome interchanges among AS donors is of interest because such effects are typical for radiation damage and caused by acute oxidative stress. IL1ß T allele probably may be considered as an AS susceptibility factor among coal miners.


Subject(s)
Anthracosilicosis/genetics , Genetic Association Studies , Interleukin-1beta/genetics , Occupational Exposure , Adult , Anthracosilicosis/etiology , Anthracosilicosis/pathology , Chromosome Aberrations/drug effects , Coal/adverse effects , Coal Mining , DNA Damage/drug effects , Genetic Predisposition to Disease , Genotype , Humans , Interleukin-12 Subunit p40/genetics , Interleukin-6/genetics , Male , Middle Aged , Miners , Polymorphism, Single Nucleotide/genetics , Silicon Dioxide/isolation & purification , Silicon Dioxide/toxicity , Vascular Endothelial Growth Factor A/genetics
2.
Mutagenesis ; 31(6): 669-675, 2016 11.
Article in English | MEDLINE | ID: mdl-27530330

ABSTRACT

Coal miners are exposed to coal dust, containing mineral particles, inorganic compounds and polycyclic aromatic hydrocarbons, and to ionizing radiation. These factors can induce oxidative stress and promote inflammation that leads to DNA damage. The aim of this investigation is to analyse the degree of DNA damage in miners working in underground coal mines in Kemerovo Region (Russian Federation) using the cytokinesis-block micronucleus assay (CBMN) in peripheral blood lymphocytes. The exposed group included 143 coal miners (mean age = 50.11±7.36 years; mean length of service in coal mining conditions = 23.26±9.66 years). As a control group, we have used venous blood extracted from 127 healthy non-exposed men. The mean age in this group was 47.67±8.45 years. We have discovered that coal miners are characterized by a significant increase in the frequency of binucleated lymphocytes with micronuclei (MN), nucleoplasmic bridges (NPBs) and protrusions (NBUDs) compared to non-exposed donors. In addition, we report, for the first time, a reduction of cell proliferation in a cohort of coal miners. These data are evidence of the genotoxic and cytostatic effects of occupational harmful factors of the coal mining industry. No correlation between the level of chromosome damage and age, smoking status or length of service in coal mining conditions were discovered. We suggest that the CBMN assay would be useful in biomonitoring studies to monitor hygiene and prevention strategies in occupational settings in coal mining countries.


Subject(s)
DNA Damage , Lymphocytes/pathology , Micronuclei, Chromosome-Defective/chemically induced , Miners , Occupational Exposure , Adult , Coal/toxicity , Dust , Humans , Male , Micronucleus Tests , Middle Aged , Russia
3.
Int J Radiat Biol ; 92(8): 466-74, 2016 08.
Article in English | MEDLINE | ID: mdl-27285066

ABSTRACT

PURPOSE: To study polymorphic variants of repair genes in people affected by long-term exposure to radon. The chromosome aberration frequency in peripheral blood lymphocytes was used as the biological marker of genotoxicity. MATERIALS AND METHODS: Genotyping of 12 single nucleotide polymorphisms in DNA repair genes (APE, XRCC1, OGG1, ADPRT, XpC, XpD, XpG, Lig4 and NBS1) was performed in children with long-term resident exposure to radon. Quantification of the aberrations was performed using light microscopy. RESULTS: The total frequency of aberrations was increased in carriers of the G/G genotype for the XpD gene (rs13181) polymorphism in recessive model confirmed by the results of ROC-analysis ('satisfactory predictor', AUC = 0.609). Single chromosome fragments frequency was increased in carriers of the G/G genotype in comparison with the T/T genotype. In respect to the total frequency of aberrations, the G/G genotype for the XpG gene (rs17655) polymorphism was also identified as a 'satisfactory predictor' (AUC = 0.605). Carriers of the T/C genotype for the ADPRT gene (rs1136410) polymorphism were characterized by an increased level of single fragments relative to the T/T genotype. CONCLUSION: The relationships with several types of cytogenetic damage suggest these three SNP (rs13181, rs17655 and rs1136410) may be considered radiosensitivity markers.


Subject(s)
Chromosome Aberrations/radiation effects , DNA Damage/genetics , DNA Repair/genetics , Lymphocytes/radiation effects , Polymorphism, Single Nucleotide/genetics , Radon/adverse effects , Adolescent , Child , DNA-Binding Proteins/genetics , Dose-Response Relationship, Radiation , Female , Humans , Lymphocytes/pathology , Male , Radiation Dosage , Radiation Exposure/adverse effects , Radiation Exposure/analysis , Radiation Tolerance/genetics
4.
Mutagenesis ; 31(2): 225-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26609129

ABSTRACT

Coal miners are exposed to a wide range of genotoxic agents that can induce genome damage. In addition, miners are characterised by a high risk of the initiation of different occupational inflammatory as well as non-inflammatory diseases. The aim of this investigation is to analyse the modifying influence of occupational pulmonary inflammatory diseases on the level of chromosome aberrations (CAs) in miners working in underground coal mines in Kemerovo Region (Russian Federation). The study group included 90 coal miners with the following pulmonary diseases: chronic dust-induced bronchitis (CDB) and coal-workers' pneumoconiosis (CWP) (mean age = 53.52±2.95 years; mean work experience in coal-mining conditions = 27.70±3.61 years). As a population control (control 1), we have used venous blood extracted from 124 healthy unexposed men. The mean age in this group was 50.92±4.56 years. Control 2 was the venous blood extracted from 42 healthy coal miners (mean age = 51.56±6.38 years; mean work experience in coal-mining conditions = 25.43±8.14 years). We have discovered that coal miners are characterised by an increased general level of CAs as well as an increased frequency of several types of CAs. The significant increase in the frequency of aberration per 100 cells and aberration of chromosome type was discovered in the group of pulmonary disease patients (study group). No correlations of the level of chromosome damage with age, smoking status and work experience in coal-mining conditions were discovered.


Subject(s)
Chromosome Aberrations , Coal Mining , Inflammation/genetics , Miners , Occupational Diseases/genetics , Occupational Exposure , Female , Humans , Inflammation/epidemiology , Lung Diseases/etiology , Male , Middle Aged , Occupational Diseases/epidemiology , Risk Factors
5.
Mutagenesis ; 30(5): 677-83, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25904585

ABSTRACT

In this study, the frequency and spectrum of chromosomal aberrations were analysed in samples of peripheral blood from 372 (mean age = 12.24 ± 2.60 years old) long-term resident children in a boarding school (Tashtagol city, Kemerovo Region, Russian Federation) under conditions of high exposure to radon and its decay products. As a control group, we used blood samples from people living in Zarubino village (Kemerovo Region, Russian Federation). We discovered that the average frequencies of single and double fragments, chromosomal exchanges, total number of aberrations, chromatid type, chromosome type and all types of aberrations were significantly increased in the exposed group. This is evidence of considerable genotoxicity to children living under conditions of high exposure to radon compared to children living under ecological conditions without increased radon radiation.


Subject(s)
Chromosome Aberrations/radiation effects , Lymphocytes/radiation effects , Radiation Exposure , Radon/toxicity , Adolescent , Child , DNA/radiation effects , DNA Damage , Female , Humans , Male , Radioactivity , Russia , Young Adult
6.
Int J Radiat Biol ; 91(6): 486-94, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25651041

ABSTRACT

PURPOSE: To investigate the individual radiosensitivity of the human genome in long-term residents of areas with high radon concentration. MATERIALS AND METHODS: The materials used for this investigation were venous blood samples extracted from children living in the boarding school of Tashtagol (Kemerovo Region, Russia). Cytogenetic damage assessment was performed using the cytokinesis-block micronucleus assay (CBMN) on peripheral blood lymphocytes. PCR, gel electrophoresis and product detection using a transilluminator were used to determine polymorphisms in the genes ADPRT (rs 1136410), hOGG1 (rs 1052133), NBS1 (rs 1805794), XRCC1 (rs 25487), XpC (rs 2228001), XpD (rs 13181), and XpG (rs 17655). Statistical analysis was performed using nonparametric methods. To ensure accurate results, FDR-correction for multiple comparisons was performed. RESULTS: We discovered a significant increase in the frequency of binucleated lymphocytes with micronuclei (MN) in carriers of the His/His genotype of the XpG gene Asp1104His polymorphism in comparison to heterozygous and homozygous carriers of the Asp allele. In addition, the Ala/Ala genotype for the ADPRT gene Val762Ala polymorphism and the Glu/Gln genotype for the NBS1 gene Glu185Gln polymorphism were associated with the elevated frequency of binucleated lymphocytes with nucleoplasmic bridges (NPB). CONCLUSIONS: As a result of this study, the elevated frequency of cytogenetic damage in people with particular DNA-repair gene polymorphisms in response to chronic exposure to radon was demonstrated. It was shown that the genes and corresponding polymorphisms (the XpG gene Asp1104His polymorphism, the ADPRT gene Val762Ala polymorphism and the NBS1 gene Glu185Gln polymorphism) can be used as molecular genetic markers of increased individual radiosensitivity in long-term residents of areas with high concentrations of radon.


Subject(s)
Air Pollutants, Radioactive/adverse effects , DNA Repair/genetics , Polymorphism, Single Nucleotide , Radiation Tolerance/genetics , Radon/adverse effects , Adolescent , Amino Acid Substitution , Cell Cycle Proteins/genetics , Child , DNA Glycosylases/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Micronucleus Tests , Nuclear Proteins/genetics , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/genetics , Russia , Transcription Factors/genetics , X-ray Repair Cross Complementing Protein 1 , Xeroderma Pigmentosum Group D Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...