Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 486(7401): 97-100, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22678287

ABSTRACT

Deep-time palaeoclimate studies are vitally important for developing a complete understanding of climate responses to changes in the atmospheric carbon dioxide concentration (that is, the atmospheric partial pressure of CO(2), p(co(2))). Although past studies have explored these responses during portions of the Cenozoic era (the most recent 65.5 million years (Myr) of Earth history), comparatively little is known about the climate of the late Miocene (∼12-5 Myr ago), an interval with p(co(2)) values of only 200-350 parts per million by volume but nearly ice-free conditions in the Northern Hemisphere and warmer-than-modern temperatures on the continents. Here we present quantitative geochemical sea surface temperature estimates from the Miocene mid-latitude North Pacific Ocean, and show that oceanic warmth persisted throughout the interval of low p(co(2)) ∼12-5 Myr ago. We also present new stable isotope measurements from the western equatorial Pacific that, in conjunction with previously published data, reveal a long-term trend of thermocline shoaling in the equatorial Pacific since ∼13 Myr ago. We propose that a relatively deep global thermocline, reductions in low-latitude gradients in sea surface temperature, and cloud and water vapour feedbacks may help to explain the warmth of the late Miocene. Additional shoaling of the thermocline after 5 Myr ago probably explains the stronger coupling between p(co(2)), sea surface temperatures and climate that is characteristic of the more recent Pliocene and Pleistocene epochs.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/analysis , Global Warming/history , Hot Temperature , Seawater , Carbon Dioxide/chemistry , Foraminifera/chemistry , Geologic Sediments/chemistry , Global Warming/statistics & numerical data , History, Ancient , Oceans and Seas , Oxygen Isotopes/analysis , Seawater/analysis , Seawater/chemistry , Wind
2.
Science ; 323(5922): 1714-8, 2009 Mar 27.
Article in English | MEDLINE | ID: mdl-19251592

ABSTRACT

The Pliocene warm interval has been difficult to explain. We reconstructed the latitudinal distribution of sea surface temperature around 4 million years ago, during the early Pliocene. Our reconstruction shows that the meridional temperature gradient between the equator and subtropics was greatly reduced, implying a vast poleward expansion of the ocean tropical warm pool. Corroborating evidence indicates that the Pacific temperature contrast between the equator and 32 degrees N has evolved from approximately 2 degrees C 4 million years ago to approximately 8 degrees C today. The meridional warm pool expansion evidently had enormous impacts on the Pliocene climate, including a slowdown of the atmospheric Hadley circulation and El Niño-like conditions in the equatorial region. Ultimately, sustaining a climate state with weak tropical sea surface temperature gradients may require additional mechanisms of ocean heat uptake (such as enhanced ocean vertical mixing).

SELECTION OF CITATIONS
SEARCH DETAIL
...