Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Limnol Oceanogr ; 69(1): 67-80, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38899067

ABSTRACT

Historically, our understanding of bacterial ecology in the Indian Ocean has been limited to regional studies that place emphasis on community structure and function within oxygen minimum zones. Thus, bacterial community dynamics across the wider Indian Ocean are largely undescribed. As part of Bio-GO-SHIP, we sequenced the 16S rRNA gene from 465 samples collected on sections I07N and I09N. We found that (i) there were 23 distinct bioregions within the Indian Ocean, (ii) the southeastern gyre had the largest gradient in bacterial alpha-diversity, (iii) the Indian Ocean surface microbiome was primarily composed of a core set of taxa, and (iv) bioregions were characterized by transitions in physical and geochemical conditions. Overall, we showed that bacterial community structure spatially delineated the surface Indian Ocean and that these microbially-defined regions were reflective of subtle ocean physical and geochemical gradients. Therefore, incorporating metrics of in-situ microbial communities into marine ecological regions traditionally defined by remote sensing will improve our ability to delineate warm, oligotrophic regions.

2.
ISME J ; 17(10): 1671-1679, 2023 10.
Article in English | MEDLINE | ID: mdl-37454234

ABSTRACT

Prochlorococcus is the most numerically abundant photosynthetic organism in the surface ocean. The Prochlorococcus high-light and warm-water adapted ecotype (HLII) is comprised of extensive microdiversity, but specific functional differences between microdiverse sub-clades remain elusive. Here we characterized both functional and phylogenetic diversity within the HLII ecotype using Bio-GO-SHIP metagenomes. We found widespread variation in gene frequency connected to local environmental conditions. Metagenome-assembled marker genes and genomes revealed a globally distributed novel HLII haplotype defined by adaptation to chronically low P conditions (HLII-P). Environmental correlation analysis revealed different factors were driving gene abundances verses phylogenetic differences. An analysis of cultured HLII genomes and metagenome-assembled genomes revealed a subclade within HLII, which corresponded to the novel HLII-P haplotype. This work represents the first global assessment of the HLII ecotype's phylogeography and corresponding functional differences. These findings together expand our understanding of how microdiversity structures functional differences and reveals the importance of nutrients as drivers of microdiversity in Prochlorococcus.


Subject(s)
Prochlorococcus , Phylogeography , Phylogeny , Prochlorococcus/genetics , Seawater , Ecotype
3.
bioRxiv ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36747826

ABSTRACT

Prochlorococcus is the most numerically abundant photosynthetic organism in the surface ocean. The Prochlorococcus high-light and warm-water adapted ecotype (HLII) is comprised of extensive microdiversity, but specific functional differences between microdiverse sub-clades remain elusive. Here we characterized both functional and phylogenetic diversity within the HLII ecotype using Bio-GO-SHIP metagenomes. We found widespread variation in gene frequency connected to local environmental conditions. Metagenomically assembled marker genes and genomes revealed a globally distributed novel HLII haplotype defined by adaptation to chronically low P conditions (HLII-P). Environmental correlation analysis revealed different factors were driving gene abundances verses phylogenetic differences. An analysis of cultured HLII genomes and metagenomically assembled genomes revealed a subclade within HLII, which corresponded to the novel HLII-P haplotype. This work represents the first global assessment of the HLII ecotype’s phylogeography and corresponding functional differences. These findings together expand our understanding of how microdiversity structures functional differences and reveals the importance of nutrients as drivers of microdiversity in Prochlorococcus .

4.
ISME J ; 17(2): 185-194, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36273241

ABSTRACT

Establishing links between microbial diversity and environmental processes requires resolving the high degree of functional variation among closely related lineages or ecotypes. Here, we implement and validate an improved metagenomic approach that estimates the spatial biogeography and environmental regulation of ecotype-specific replication patterns (RObs) across ocean regions. A total of 719 metagenomes were analyzed from meridional Bio-GO-SHIP sections in the Atlantic and Indian Ocean. Accounting for sequencing bias and anchoring replication estimates in genome structure were critical for identifying physiologically relevant biological signals. For example, ecotypes within the dominant marine cyanobacteria Prochlorococcus exhibited distinct diel cycles in RObs that peaked between 19:00-22:00. Additionally, both Prochlorococcus ecotypes and ecotypes within the highly abundant heterotroph Pelagibacter (SAR11) demonstrated systematic biogeographies in RObs that differed from spatial patterns in relative abundance. Finally, RObs was significantly regulated by nutrient stress and temperature, and explained by differences in the genomic potential for nutrient transport, energy production, cell wall structure, and replication. Our results suggest that our new approach to estimating replication is reflective of gross population growth. Moreover, this work reveals that the interaction between adaptation and environmental change drives systematic variability in replication patterns across ocean basins that is ecotype-specific, adding an activity-based dimension to our understanding of microbial niche space.


Subject(s)
Ecotype , Prochlorococcus , Seawater/microbiology , Indian Ocean , Metagenome
5.
Sci Data ; 9(1): 688, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369310

ABSTRACT

Concentrations and elemental stoichiometry of suspended particulate organic carbon, nitrogen, phosphorus, and oxygen demand for respiration (C:N:P:-O2) play a vital role in characterizing and quantifying marine elemental cycles. Here, we present Version 2 of the Global Ocean Particulate Organic Phosphorus, Carbon, Oxygen for Respiration, and Nitrogen (GO-POPCORN) dataset. Version 1 is a previously published dataset of particulate organic matter from 70 different studies between 1971 and 2010, while Version 2 is comprised of data collected from recent cruises between 2011 and 2020. The combined GO-POPCORN dataset contains 2673 paired surface POC/N/P measurements from 70°S to 73°N across all major ocean basins at high spatial resolution. Version 2 also includes 965 measurements of oxygen demand for organic carbon respiration. This new dataset can help validate and calibrate the next generation of global ocean biogeochemical models with flexible elemental stoichiometry. We expect that incorporating variable C:N:P:-O2 into models will help improve our estimates of key ocean biogeochemical fluxes such as carbon export, nitrogen fixation, and organic matter remineralization.

6.
Commun Earth Environ ; 3(1): 271, 2022.
Article in English | MEDLINE | ID: mdl-36407846

ABSTRACT

Oceanic nutrient cycles are coupled, yet carbon-nitrogen-phosphorus (C:N:P) stoichiometry in marine ecosystems is variable through space and time, with no clear consensus on the controls on variability. Here, we analyze hydrographic, plankton genomic diversity, and particulate organic matter data from 1970 stations sampled during a global ocean observation program (Bio-GO-SHIP) to investigate the biogeography of surface ocean particulate organic matter stoichiometry. We find latitudinal variability in C:N:P stoichiometry, with surface temperature and macronutrient availability as strong predictors of stoichiometry at high latitudes. Genomic observations indicated community nutrient stress and suggested that nutrient supply rate and nitrogen-versus-phosphorus stress are predictive of hemispheric and regional variations in stoichiometry. Our data-derived statistical model suggests that C:P and N:P ratios will increase at high latitudes in the future, however, changes at low latitudes are uncertain. Our findings suggest systematic regulation of elemental stoichiometry among ocean ecosystems, but that future changes remain highly uncertain.

7.
Science ; 372(6539): 287-291, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33859034

ABSTRACT

Nutrient supply regulates the activity of phytoplankton, but the global biogeography of nutrient limitation and co-limitation is poorly understood. Prochlorococcus adapt to local environments by gene gains and losses, and we used genomic changes as an indicator of adaptation to nutrient stress. We collected metagenomes from all major ocean regions as part of the Global Ocean Ship-based Hydrographic Investigations Program (Bio-GO-SHIP) and quantified shifts in genes involved in nitrogen, phosphorus, and iron assimilation. We found regional transitions in stress type and severity as well as widespread co-stress. Prochlorococcus stress genes, bottle experiments, and Earth system model predictions were correlated. We propose that the biogeography of multinutrient stress is stoichiometrically linked by controls on nitrogen fixation. Our omics-based description of phytoplankton resource use provides a nuanced and highly resolved description of nutrient stress in the global ocean.


Subject(s)
Genes, Bacterial , Metagenome , Oceans and Seas , Phytoplankton/genetics , Phytoplankton/physiology , Prochlorococcus/genetics , Prochlorococcus/physiology , Adaptation, Physiological , Atlantic Ocean , Indian Ocean , Iron/metabolism , Metagenomics , Nitrates/metabolism , Nitrogen/metabolism , Nitrogen Fixation/genetics , Nutrients , Pacific Ocean , Phosphates/metabolism , Phosphorus/metabolism , Phytoplankton/metabolism , Prochlorococcus/metabolism , Seawater/microbiology , Stress, Physiological/genetics
8.
Sci Data ; 8(1): 107, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863919

ABSTRACT

Detailed descriptions of microbial communities have lagged far behind physical and chemical measurements in the marine environment. Here, we present 971 globally distributed surface ocean metagenomes collected at high spatio-temporal resolution. Our low-cost metagenomic sequencing protocol produced 3.65 terabases of data, where the median number of base pairs per sample was 3.41 billion. The median distance between sampling stations was 26 km. The metagenomic libraries described here were collected as a part of a biological initiative for the Global Ocean Ship-based Hydrographic Investigations Program, or "Bio-GO-SHIP." One of the primary aims of GO-SHIP is to produce high spatial and vertical resolution measurements of key state variables to directly quantify climate change impacts on ocean environments. By similarly collecting marine metagenomes at high spatiotemporal resolution, we expect that this dataset will help answer questions about the link between microbial communities and biogeochemical fluxes in a changing ocean.


Subject(s)
Metagenome , Microbiota/genetics , Seawater/microbiology , Genomic Library , Metagenomics , Oceans and Seas
9.
Proc Natl Acad Sci U S A ; 117(37): 22866-22872, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32868433

ABSTRACT

Climate-driven depletion of ocean oxygen strongly impacts the global cycles of carbon and nutrients as well as the survival of many animal species. One of the main uncertainties in predicting changes to marine oxygen levels is the regulation of the biological respiration demand associated with the biological pump. Derived from the Redfield ratio, the molar ratio of oxygen to organic carbon consumed during respiration (i.e., the respiration quotient, [Formula: see text]) is consistently assumed constant but rarely, if ever, measured. Using a prognostic Earth system model, we show that a 0.1 increase in the respiration quotient from 1.0 leads to a 2.3% decline in global oxygen, a large expansion of low-oxygen zones, additional water column denitrification of 38 Tg N/y, and the loss of fixed nitrogen and carbon production in the ocean. We then present direct chemical measurements of [Formula: see text] using a Pacific Ocean meridional transect crossing all major surface biome types. The observed [Formula: see text] has a positive correlation with temperature, and regional mean values differ significantly from Redfield proportions. Finally, an independent global inverse model analysis constrained with nutrients, oxygen, and carbon concentrations supports a positive temperature dependence of [Formula: see text] in exported organic matter. We provide evidence against the common assumption of a static biological link between the respiration of organic carbon and the consumption of oxygen. Furthermore, the model simulations suggest that a changing respiration quotient will impact multiple biogeochemical cycles and that future warming can lead to more intense deoxygenation than previously anticipated.

10.
PLoS One ; 15(9): e0238405, 2020.
Article in English | MEDLINE | ID: mdl-32936809

ABSTRACT

In the California Current Ecosystem, El Niño acts as a natural phenomenon that is partially representative of climate change impacts on marine bacteria at timescales relevant to microbial communities. Between 2014-2016, the North Pacific warm anomaly (a.k.a., the "blob") and an El Niño event resulted in prolonged ocean warming in the Southern California Bight (SCB). To determine whether this "marine heatwave" resulted in shifts in microbial populations, we sequenced the rpoC1 gene from the biogeochemically important picocyanobacteria Prochlorococcus and Synechococcus at 434 time points from 2009-2018 in the MICRO time series at Newport Beach, CA. Across the time series, we observed an increase in the abundance of Prochlorococcus relative to Synechococcus as well as elevated frequencies of ecotypes commonly associated with low-nutrient and high-temperature conditions. The relationships between environmental and ecotype trends appeared to operate on differing temporal scales. In contrast to ecotype trends, most microdiverse populations were static and possibly reflect local habitat conditions. The only exceptions were microdiversity from Prochlorococcous HLI and Synechococcus Clade II that shifted in response to the 2015 El Niño event. Overall, Prochlorococcus and Synechococcus populations did not return to their pre-heatwave composition by the end of this study. This research demonstrates that extended warming in the SCB can result in persistent changes in key microbial populations.


Subject(s)
El Nino-Southern Oscillation , Prochlorococcus/isolation & purification , Seawater/microbiology , Synechococcus/isolation & purification , Aquatic Organisms/genetics , Aquatic Organisms/growth & development , Aquatic Organisms/isolation & purification , Biodiversity , California , Climate Change , Ecosystem , Ecotype , Genes, Bacterial , Microbiota/genetics , Pacific Ocean , Phylogeny , Prochlorococcus/genetics , Prochlorococcus/growth & development , Seasons , Synechococcus/genetics , Synechococcus/growth & development , Temperature
11.
Philos Trans R Soc Lond B Biol Sci ; 375(1798): 20190254, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32200740

ABSTRACT

Linking 'omics measurements with biogeochemical cycles is a widespread challenge in microbial community ecology. Here, we propose applying genomic adaptation as 'biosensors' for microbial investments to overcome nutrient stress. We then integrate this genomic information with a trait-based model to predict regional shifts in the elemental composition of marine plankton communities. We evaluated this approach using metagenomic and particulate organic matter samples from the Atlantic, Indian and Pacific Oceans. We find that our genome-based trait model significantly improves our prediction of particulate C : P (carbon : phosphorus) across ocean regions. Furthermore, we detect previously unrecognized ocean areas of iron, nitrogen and phosphorus stress. In many ecosystems, it can be very challenging to quantify microbial stress. Thus, a carefully calibrated genomic approach could become a widespread tool for understanding microbial responses to environmental changes and the biogeochemical outcomes. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.


Subject(s)
Adaptation, Biological , Genome, Microbial/physiology , Metagenome , Microbiota/genetics , Seawater/chemistry , Atlantic Ocean , Indian Ocean , Pacific Ocean
12.
ISME J ; 13(2): 430-441, 2019 02.
Article in English | MEDLINE | ID: mdl-30283146

ABSTRACT

The globally abundant marine Cyanobacteria Prochlorococcus and Synechococcus share many physiological traits but presumably have different evolutionary histories and associated phylogeography. In Prochlorococcus, there is a clear phylogenetic hierarchy of ecotypes, whereas multiple Synechococcus clades have overlapping physiologies and environmental distributions. However, microbial traits are associated with different phylogenetic depths. Using this principle, we reclassified diversity at different phylogenetic levels and compared the phylogeography. We sequenced the genetic diversity of Prochlorococcus and Synechococcus from 339 samples across the tropical Pacific Ocean and North Atlantic Ocean using a highly variable phylogenetic marker gene (rpoC1). We observed clear parallel niche distributions of ecotypes leading to high Pianka's Index values driven by distinct shifts at two transition points. The first transition point at 6°N distinguished ecotypes adapted to warm waters but separated by macronutrient content. At 39°N, ecotypes adapted to warm, low macronutrient vs. colder, high macronutrient waters shifted. Finally, we detected parallel vertical and regional single-nucleotide polymorphism microdiversity within clades from both Prochlorococcus and Synechococcus, suggesting uniquely adapted populations at very specific depths, as well as between the Atlantic and Pacific Oceans. Overall, this study demonstrates that Prochlorococcus and Synechococcus have shared phylogenetic organization of traits and associated phylogeography.


Subject(s)
Prochlorococcus/genetics , Seawater/microbiology , Synechococcus/genetics , Atlantic Ocean , Biological Evolution , Ecotype , Pacific Ocean , Phylogeny , Phylogeography , Prochlorococcus/physiology , Synechococcus/physiology , Water Microbiology
13.
PLoS One ; 12(9): e0184371, 2017.
Article in English | MEDLINE | ID: mdl-28880951

ABSTRACT

The North Pacific Ocean (between approximately 0°N and 50°N) contains the largest continuous ecosystem on Earth. This region plays a vital role in the cycling of globally important nutrients as well as carbon. Although the microbial communities in this region have been assessed, the dynamics of viruses (abundances and production rates) remains understudied. To address this gap, scientific cruises during the winter and summer seasons (2013) covered the North Pacific basin to determine factors that may drive virus abundances and production rates. Along with information on virus particle abundance and production, we collected a spectrum of oceanographic metrics as well as information on microbial diversity. The data suggest that both biotic and abiotic factors affect the distribution of virus particles. Factors influencing virus dynamics did not vary greatly between seasons, although the abundance of viruses was almost an order of magnitude greater in the summer. When considered in the context of microbial community structure, our observations suggest that members of the bacterial phyla Proteobacteria, Planctomycetes, and Bacteroidetes were correlated to both virus abundances and virus production rates: these phyla have been shown to be enriched in particle associated communities. The findings suggest that environmental factors influence virus community functions (e.g., virion particle degradation) and that particle-associated communities may be important drivers of virus activity.


Subject(s)
Seawater/virology , Viruses/isolation & purification , Bacteroidetes/classification , Bacteroidetes/isolation & purification , Pacific Ocean , Proteobacteria/classification , Proteobacteria/isolation & purification , Seasons , Seawater/microbiology , Viruses/classification
14.
Environ Microbiol Rep ; 9(2): 55-70, 2017 04.
Article in English | MEDLINE | ID: mdl-28185400

ABSTRACT

With rapidly improving sequencing technologies, scientists have recently gained the ability to examine diverse microbial communities at high genomic resolution, revealing that both free-living and host-associated microbes partition their environment at fine phylogenetic scales. This 'microdiversity,' or closely related (> 97% similar 16S rRNA gene) but ecologically and physiologically distinct sub-taxonomic groups, appears to be an intrinsic property of microorganisms. However, the functional implications of microdiversity as well as its effects on microbial biogeography are poorly understood. Here, we present two theoretical models outlining the evolutionary mechanisms that drive the formation of microdiverse 'sub-taxa.' Additionally, we review recent literature and reveal that microdiversity influences a wide range of functional traits across diverse ecosystems and microbes. Moving to higher levels of organization, we use laboratory data from marine, soil, and host-associated bacteria to demonstrate that the aggregated trait-based response of microdiverse sub-taxa modifies the fundamental niche of microbes. The correspondence between microdiversity and niche space represents a critical tool for future studies of microbial ecology. By combining growth experiments on diverse isolates with examinations of environmental abundance patterns, researchers can better quantify the fundamental and realized niches of microbes and improve understanding of microbial biogeography and response to future environmental change.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biodiversity , Ecosystem , Phylogeography , Biological Evolution , Models, Theoretical
15.
ISME J ; 10(7): 1555-67, 2016 07.
Article in English | MEDLINE | ID: mdl-26800235

ABSTRACT

The distribution of major clades of Prochlorococcus tracks light, temperature and other environmental variables; yet, the drivers of genomic diversity within these ecotypes and the net effect on biodiversity of the larger community are poorly understood. We examined high light (HL) adapted Prochlorococcus communities across spatial and temporal environmental gradients in the Pacific Ocean to determine the ecological drivers of population structure and diversity across taxonomic ranks. We show that the Prochlorococcus community has the highest diversity at low latitudes, but seasonality driven by temperature, day length and nutrients adds complexity. At finer taxonomic resolution, some 'sub-ecotype' clades have unique, cohesive responses to environmental variables and distinct biogeographies, suggesting that presently defined ecotypes can be further partitioned into ecologically meaningful units. Intriguingly, biogeographies of the HL-I sub-ecotypes are driven by unique combinations of environmental traits, rather than through trait hierarchy, while the HL-II sub-ecotypes appear ecologically similar, thus demonstrating differences among these dominant HL ecotypes. Examining biodiversity across taxonomic ranks reveals high-resolution dynamics of Prochlorococcus evolution and ecology that are masked at phylogenetically coarse resolution. Spatial and seasonal trends of Prochlorococcus communities suggest that the future ocean may be comprised of different populations, with implications for ecosystem structure and function.


Subject(s)
Genetic Variation , Prochlorococcus/genetics , Adaptation, Physiological , Biodiversity , Ecosystem , Ecotype , Environment , Light , Pacific Ocean , Phylogeny , Phylogeography , Prochlorococcus/classification , Prochlorococcus/physiology , Prochlorococcus/radiation effects , Seawater/microbiology
16.
Environ Microbiol ; 15(10): 2736-47, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23663376

ABSTRACT

In the open ocean genetically diverse clades of the unicellular cyanobacteria Prochlorococcus are biogeographically structured along environmental gradients, yet little is known about their in situ activity. To address this gap, here we use the numerically dominant Prochlorococcus clade eHL-II (eMIT9312) as a model organism to develop and apply a method to examine their in situ activity using rRNA content and cell size as metrics of cellular physiology. For two representative isolates (MIT9312 and MIT9215) rRNA cell(-1) increases linearly with specific growth rate but is anticorrelated with cell size indicated by flow cytometrically measured (SSC). Although each strain has a unique relationship between cellular rRNA (or cell size) and growth rate, both strains have the same strong positive correlation between rRNA cell(-1) SSC(-1) and growth rate. We field test this approach and observe distinct patterns of eHL-II clade specific activity (rRNA cell(-1) SSC(-1)) with depth that are consistent with patterns of photosynthetic rates. This molecular technique provides unique insight into the ecology of Prochlorococcus and could potentially be expanded to include other microbes to unravel the ecological and biogeochemical contributions of genetically distinct marine side scatter microbes.


Subject(s)
Environmental Microbiology , Prochlorococcus/cytology , Prochlorococcus/physiology , RNA, Ribosomal/analysis , Light , Nitrates/analysis , Nitrites/analysis , Photosynthesis/physiology , Prochlorococcus/genetics , Prochlorococcus/growth & development , RNA, Ribosomal/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...