Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 935: 173335, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38763194

ABSTRACT

Maintaining and improving soil health (SH) is essential for the long-term sustainability and productivity of agriculture, notably in the face of climate change. This study addressed the challenge of selecting appropriate soil indicators, scoring methods, and indexing approaches for SH evaluation under no-till crop rotations. This study aimed to develop minimum datasets (MDS) and assess SH in six crop rotations (denoted as conventional, diversified, high-risk and high-reward, market-driven, pulse-oilseed intensified, and soil health-enhanced rotations) at three sites on the Canadian prairies. Fourteen soil indicators in the total dataset (TDS) were examined, encompassing both chemical (0-7.5 cm depth) and physical (5-10 cm depth) properties. Principal component analysis (PCA) identified MDSs from the TDS. Two scoring [linear (L) and non-linear (NL)] and two SH indexing approaches [additive (A) and weighted additive (WA)] were used to calculate the SH index (SHI). One-way ANOVA evaluated the SHI among crop rotations. The PCA revealed variations in the number of indicators in the MDS across sites, with soil organic carbon, bulk density, macroporosity, and plant-available water capacity as the common indicators for MDS across sites. Other indicators such as particulate organic matter carbon, aggregate stability, field capacity, and microporosity were found to be important, depending on the site. The non-linear weighted additive SH indexing (SHI.NLWA) proved to be the most sensitive and effective for differentiating among crop rotations in the short-term across study sites (R2 = 0.89-0.94, P < 0.05). Crop rotations significantly influenced SHI, with the diversified and high-risk and high-reward rotations having the highest SHI at Lethbridge and Scott, respectively. Overall, the diversified rotation at Lethbridge and Swift Current, along with the high-risk and high-reward rotation at Scott, exhibited better soil function than other rotations. Monitoring SHI over time and selecting crop rotations that improve SH can collectively enhance soil functions and agroecosystem productivity.


Subject(s)
Agriculture , Environmental Monitoring , Soil , Soil/chemistry , Canada , Agriculture/methods , Environmental Monitoring/methods , Grassland , Crops, Agricultural , Climate Change
2.
Environ Sci Pollut Res Int ; 30(5): 12235-12256, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36107301

ABSTRACT

The South Saskatchewan River Basin (SSRB) is considered one of the most intensively farmed regions in Canada, with high densities of livestock and expansive areas of irrigated cropland. We measured concentrations of seven veterinary antimicrobials (VAs) in 114 surface water samples from feedlot environs and 219 samples from irrigation conveyances in the SSRB. Overall, detection frequencies in feedlot environs were 100% for chlortetracycline (CTC) and tetracycline (TC), 94% for monensin (MON), 84% for tylosin (TYL), 72% for lincomycin (LIN), 66% for erythromycin (ERY), and 23% for sulfamethazine (SMZ). For irrigation conveyances, detection frequencies for CTC and TC remained high (94-100%), but dropped to 18% for ERY, 15% for TYL, 10% for MON, and 4% for SMZ. Lincomycin was not detected in irrigation conveyance water. Maximum concentrations of VAs ranged from 1384 µg L-1 (TC) to 17 ng L-1 (SMZ) in feedlot environs while those in irrigation conveyances were 155 ng L-1 (TC) to 29 ng L-1 (ERY). High detection frequencies and median concentrations of VAs in both feedlot environs and irrigation conveyances were associated with high amounts of precipitation. However, an irrigation district (ID) with high livestock density (Lethbridge Northern) did not exhibit higher concentrations of VAs compared to IDs with less livestock, while levels of VAs in irrigation conveyances were less influenced by the degree of surface runoff. The ubiquity of CTC and TC in our study is likely a reflection of its widespread use in intensive livestock operations. Additional investigation is required to link environmental concentrations of VAs with livestock densities and increase our understanding of potential antimicrobial resistance in high-intensity agroecosystems.


Subject(s)
Anti-Infective Agents , Chlortetracycline , Cattle , Animals , Alberta , Anti-Bacterial Agents , Sulfamethazine , Lincomycin , Tetracycline , Tylosin , Erythromycin , Manure
3.
Sci Total Environ ; 812: 152267, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34902397

ABSTRACT

Biochar in ruminant diets is being assessed as a method for simultaneously improving animal production and reducing enteric CH4 emissions, but little is known about subsequent biochar-manure interactions post-excretion. We examined chemical properties, greenhouse gas (GHG) emissions and organic matter (OM) composition during farm scale stockpiling (SP) or composting (CP) of manure from cattle that either received a pine-based biochar in their diet (BM) or did not (RM). Manure piles were monitored hourly for temperature and weekly for top surface CO2, N2O and CH4 fluxes over 90 d in a semiarid location near Lethbridge, AB, Canada. Results indicate that cumulative CO2, N2O and CH4 emissions were not affected by biochar, implying that BM was as labile as RM. The pH, total C (TC), NO3-N and Olsen P were also not influenced by biochar, although it was observed that NH4-N and OM extractability were both 13% lower in BM than RM. Solid-state 13C nuclear magnetic resonance (NMR) showed that biochar increased stockpile/compost aromaticity, yet it did not alter the bulk C speciation of manure OM. Further analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that dissolved OM was enriched by strongly reduced chemical constituents, with BM providing more humic-like OM precursors than RM. Inclusion of a pine-based biochar in cattle diets to generate BM is consistent with current trends in the circular economy, "closing the loop" in agricultural supply chains by returning C-rich organic amendments to croplands. Stockpiling/composting the resulting BM, however, may not provide a clear advantage over directly mixing low levels of biochar with manure. Further research is required to validate BM as a tool to reduce the C footprint of livestock waste management.


Subject(s)
Greenhouse Gases , Manure , Animals , Cattle , Charcoal , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Nutrients , Soil
4.
Article in English | MEDLINE | ID: mdl-34605371

ABSTRACT

Degradation of antimicrobial resistance genes (ARG) in manure from beef cattle administered (kg-1 feed) 44 mg of chlortetracycline (CTC), 44 mg of chlortetracycline plus sulfamethazine (CTCSMZ), 11 mg of tylosin (TYL), or no antimicrobials (Control) was examined. Manure was stockpiled and quantitative PCR (qPCR) was used to assess tetracycline [tet(C), (L), (M), (W)], erythromycin [erm(A), (B), (F), (X)], and sulfamethazine [sul(1), (2)] ARG and 16S rDNA. After 102 d, copies of all ARG decreased by 0.3 to 1.5 log10 copies (g dry matter)-1. Temperature in the interior of piles averaged ≥ 55 °C for 10 d, except for CTCSMZ, but did not reach 55 °C at pile exteriors. Compared to Control, CTCSMZ increased (P < 0.05) tet(C), tet(M), tet(W), sul(1), and sul(2) in stockpiled manure. Copies of 16S rDNA remained higher (P < 0.05) in CTCSMZ than Control for the first 26 d. Levels of most ARG did not differ between the interior and exterior of stockpiles. Our results suggest that stockpiled manure would still introduce ARG to land upon manure application, but at levels lower than if manure was applied fresh.


Subject(s)
Anti-Infective Agents , Manure , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Drug Resistance, Bacterial , Tylosin
5.
Sci Rep ; 10(1): 19310, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168849

ABSTRACT

The investigative material 3-nitrooxypropanol (3-NOP) can reduce enteric methane emissions from beef cattle. North American beef cattle are often supplemented the drug monensin to improve feed digestibility. Residual and confounding effects of these additives on manure greenhouse gas (GHG) emissions are unknown. This research tested whether manure carbon and nitrogen, and GHG and ammonia emissions, differed from cattle fed a typical finishing diet and 3-NOP [125-200 mg kg-1 dry matter (DM) feed], or both 3-NOP (125-200 mg kg-1 DM) and monensin (33 mg kg-1 DM) together, compared to a control (no supplements) when manure was stockpiled or composted for 202 days. Consistent with other studies, cumulative GHGs (except nitrous oxide) and ammonia emissions were higher from composted compared to stockpiled manure (all P < 0.01). Dry matter, total carbon and total nitrogen mass balance estimates, and cumulative GHG and ammonia emissions, from stored manure were not affected by 3-NOP or monensin. During the current experiment, supplementing beef cattle with 3-NOP did not significantly affect manure GHG or NH3 emissions during storage under the tested management conditions, suggesting supplementing cattle with 3-NOP does not have residual effects on manure decomposition as estimated using total carbon and nitrogen losses and GHG emissions.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Greenhouse Gases/analysis , Methane/analysis , Monensin/administration & dosage , Propanols/administration & dosage , Animal Feed , Animals , Canada , Carbon , Carbon Dioxide , Cattle , Climate , Diet/veterinary , Manure , Nitrogen , Nitrous Oxide/analysis , Rain , Red Meat , Temperature
6.
BMC Microbiol ; 19(1): 197, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455230

ABSTRACT

BACKGROUND: Comparative knowledge of microbiomes and resistomes across environmental interfaces between animal production systems and urban settings is lacking. In this study, we executed a comparative analysis of the microbiota and resistomes of metagenomes from cattle feces, catch basin water, manured agricultural soil and urban sewage. RESULTS: Metagenomic DNA from composite fecal samples (FC; n = 12) collected from penned cattle at four feedlots in Alberta, Canada, along with water from adjacent catchment basins (CB; n = 13), soil (n = 4) from fields in the vicinity of one of the feedlots and urban sewage influent (SI; n = 6) from two municipalities were subjected to Illumina HiSeq2000 sequencing. Firmicutes exhibited the highest prevalence (40%) in FC, whereas Proteobacteria were most abundant in CB (64%), soil (60%) and SI (83%). Among sample types, SI had the highest diversity of antimicrobial resistance (AMR), and metal and biocide resistance (MBR) classes (13 & 15) followed by FC (10 & 8), CB (8 & 4), and soil (6 & 1). The highest antimicrobial resistant (AMR) gene (ARG) abundance was harboured by FC, whereas soil samples had a very small, but unique resistome which did not overlap with FC & CB resistomes. In the beef production system, tetracycline resistance predominated followed by macrolide resistance. The SI resistome harboured ß-lactam, macrolide, tetracycline, aminoglycoside, fluoroquinolone and fosfomycin resistance determinants. Metal and biocide resistance accounted for 26% of the SI resistome with a predominance of mercury resistance. CONCLUSIONS: This study demonstrates an increasing divergence in the nature of the microbiome and resistome as the distance from the feedlot increases. Consistent with antimicrobial use, tetracycline and macrolide resistance genes were predominant in the beef production system. One of the feedlots contributed both conventional (raised with antibiotics) and natural (raised without antibiotics) pens samples. Although natural pen samples exhibited a microbiota composition that was similar to samples from conventional pens, their resistome was less complex. Similarly, the SI resistome was indicative of drug classes used in humans and the greater abundance of mercury resistance may be associated with contamination of municipal water with household and industrial products.


Subject(s)
Bacteria/drug effects , Bacteria/isolation & purification , Drug Resistance, Bacterial , Feces/microbiology , Manure/microbiology , Microbiota , Sewage/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/classification , Bacteria/genetics , Bacterial Proteins/genetics , Biodiversity , Canada , Cattle , Soil/chemistry , Soil Microbiology
7.
Article in English | MEDLINE | ID: mdl-29215973

ABSTRACT

Dissipation of antimicrobial resistance genes (ARG) during composting of cattle manure generated through fortification versus administration of antimicrobials in feed was compared. Manure was collected from cattle fed diets containing (kg-1) dry matter (DM): (1) 44 mg chlortetracycline (CTC), (2) a mixture of 44 mg each of chlortetracycline and sulfamethazine (CTCSMZ), (3) 11 mg tylosin (TYL) or (4) Control, no antimicrobials. Manures were composted for 30 d with a single mixing after 16 d to generate the second heating cycle. Quantitative PCR (qPCR) was used to measure 16S rDNA and tetracycline (tet), erythromycin (erm) and sulfamethazine (sul) genes. Temperature peaks ranged from 48 to 68°C across treatments in the first composting cycle, but except for the control, did not exceed 55°C in the second cycle. Copy numbers of 16S rDNA decreased (P < 0.05) during composting, but were not altered by antimcrobials. Except tet(L), all ARG decreased by 0.1-1.6 log10 g DM-1 in the first cycle, but some genes (tet[B], tet[L], erm[F], erm[X]) increased (P < 0.05) by 1.0-3.1 log10 g DM-1 in the second. During composting, levels of tet(M) and tet(W) in CTC, erm(A), erm(B) and erm(X) in TYL, and sul(1) in CTCSMZ remained higher (P < 0.05) in fed than fortified treatments. The dissipation of ARG during composting of manure fortified with antimicrobials differs from manure generated by cattle that are administered antimicrobials in feed, and does not always align with the dissipation of antimicrobial residues.


Subject(s)
Anti-Infective Agents/administration & dosage , Composting/methods , Drug Resistance, Microbial/genetics , Genes, Bacterial , Manure/microbiology , Administration, Oral , Animals , Cattle , Soil Microbiology
8.
J Environ Qual ; 45(5): 1644-1651, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27695746

ABSTRACT

Land application of manure containing antimicrobials results in the dispersion of the antimicrobials in agro-ecosystems. Dissipation of excreted antimicrobials in seasonally frozen agricultural soils has not been fully characterized under field conditions. This study investigated the field dissipation kinetics of chlortetracycline, sulfamethazine, and tylosin over a 10-mo period after fall application of manure from cattle () administered 44 mg chlortetracycline (chlortetracycline treatment [CTC]), 44 mg each of chlortetracycline and sulfamethazine (CTCSMZ), or 11 mg tylosin per kg feed daily. Antimicrobial concentrations in manured soil reflected the same relative concentrations in manure: chlortetracycline > sulfamethazine > tylosin. The first-order dissipation half-life (DT) for chlortetracycline from the CTCSMZ treatment was 77 d during the growing season and 648 d during the nongrowing season when the soil was frozen for an extended period. By comparison, dissipation of chlortetracycline added alone (treatment CTC) did not differ significantly between the two seasons (mean DT, 121 d). During the nongrowing season, chlortetracycline from CTC dissipated faster ( = 0.004) than that from the CTCSMZ treatment, indicating that the presence of sulfamethazine may have altered the dissipation of chlortetracycline. Dissipation kinetics for sulfamethazine and tylosin were not determined due to low detection in the manure-amended soil. Sulfamethazine was detected (up to 16 ± 10 µg kg) throughout the 10-mo monitoring period. Tylosin concentration was ≤11 ± 6.6 µg kg and gradually dissipated. Chlortetracycline was detectable 10 mo after application in the seasonally frozen soil, indicating a risk for residue build-up in the soil and subsequent offsite contamination.


Subject(s)
Anti-Infective Agents/analysis , Manure , Soil Pollutants/analysis , Animals , Anti-Bacterial Agents , Cattle , Freezing , Red Meat , Soil , Tylosin
9.
J Environ Qual ; 45(2): 494-502, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27065396

ABSTRACT

Rain runoff from windrowed or stockpiled manure may contain antimicrobials with the potential to contaminate surface and ground water. To quantify the concentration of antimicrobials transported in runoff from windrowed manure, antimicrobials were administered continuously in feed to beef cattle () as follows: 44 mg of chlortetracycline kg feed (dry weight), a 1:1 mixture of 44 mg of chlortetracycline and 44 mg sulfamethazine kg feed, and 11 mg of tylosin kg feed. Cattle in a fourth treatment group received no antimicrobials (control). Manure from the cattle was used to construct two windrows per treatment. On Days 2 and 21 of composting, a portable Guelph Rainfall Simulator II was used to apply deionized water at an intensity of 127 mm h to each windrow, and the runoff was collected. Manure samples were collected before rain simulations on Days 2 and 21 of composting for antimicrobial analysis. On Day 2, average concentrations of chlortetracycline, sulfamethazine, and tylosin in manure were 2580, 450, and 120 µg kg, respectively, with maximum concentrations in runoff of 2740, 3600, and 4930 µg L, respectively. Concentrations of all three antimicrobials in runoff were higher ( < 0.05) on Day 2 than on Day 21, reflecting the higher concentrations in manure on Day 2. Maximum estimated masses of chlortetracycline, sulfamethazine, and tylosin that could be transported in runoff from a windrow (3 m long, 2.5 m wide, 1.5 m high) were approximately 0.87 to 0.94, 1.57, and 1.23 g, respectively. This study demonstrates the importance of windrow composting in reducing antimicrobial concentrations in manure. The runoff from windrows can be a source of antimicrobials and demonstrates the need for containment of runoff from composting facilities to mitigate antimicrobial contamination of surface and groundwater resources.


Subject(s)
Anti-Infective Agents/analysis , Composting , Manure , Water Pollutants, Chemical/analysis , Animals , Cattle , Red Meat , Soil , Water Movements
10.
J Environ Qual ; 45(2): 503-10, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27065397

ABSTRACT

Fortification of manure with antimicrobials is one approach to studying their dissipation. However, fortified antimicrobials may not accurately model dissipation that occurs after antimicrobials have been administered to livestock in feed and excreted in manure. This study examined the dissipation of antimicrobials excreted in manure versus those added directly to manure (fortified). Steers were fed a diet containing (kg feed) (i) 44 mg chlortetracycline, (ii) 44 mg each of chlortetracycline and sulfamethazine, (iii) 11 mg tylosin, and (iv) no antimicrobials (control). Fortified antimicrobial treatments were prepared by adding antimicrobials to control manure. Manure was composted for 30 d, sampled every 2 to 3 d, and analyzed for antimicrobials and compost properties. Antimicrobial dissipation followed first-order kinetics. The dissipation rate constant was significantly greater (based on 95% confidence limit) for excreted (0.29-0.54 d) than for fortified chlortetracycline (0.11-0.13 d). In contrast, dissipation rate constants were significantly greater for fortified sulfamethazine (0.47 d) and tylosin (0.31 d) than when the same antimicrobials were excreted (0.08 and 0.07 d, respectively). On average, 85 to 99% of the initial antimicrobial concentrations in manure were dissipated after 30 d of composting. The degree of dissipation was greater ( < 0.0001) for fortified (99%) than for excreted tylosin (85%). Composting can be used to reduce environmental loading of antimicrobials before field application of beef cattle manure. Dissipation rates of fortified antimicrobials during manure composting may not accurately reflect those of antimicrobials that are consumed and excreted by cattle.


Subject(s)
Anti-Infective Agents/analysis , Composting , Environmental Pollutants/analysis , Manure , Administration, Oral , Animal Feed , Animals , Cattle , Male , Tylosin
11.
J Environ Qual ; 45(2): 528-36, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27065400

ABSTRACT

Windrow composting or stockpiling reduces the viability of pathogens and antimicrobial residues in manure. However, the impact of these manure management practices on the persistence of genes coding for antimicrobial resistance is less well known. In this study, manure from cattle administered 44 mg of chlortetracycline kg feed (dry wt. basis) (CTC), 44 mg of CTC and 44 mg of sulfamethazine kg feed (CTCSMZ), 11 mg of tylosin kg feed (TYL), and no antimicrobials (control) were composted or stockpiled over 102 d. Temperature remained ≥55°C for 35 d in compost and 2 d in stockpiles. Quantitative PCR was used to measure levels of 16S rRNA genes and tetracycline [(B), (C), (L), (M), (W)], erythromycin [(A), (B), (F), (X)], and sulfamethazine [(1), (2)] resistance determinants. After 102 d, 16S rRNA genes and all resistance determinants declined by 0.5 to 3 log copies per gram dry matter. Copies of 16S rRNA genes were affected ( < 0.05) by antimicrobials with the ranking of control > CTC = TYL > CTCSMZ. Compared with the control, antimicrobials did not increase the abundance of resistance genes in either composted or stockpiled manure, except (M) and (2) in CTCSMZ ( < 0.05). The decline in 16S rRNA genes and resistance determinants was higher ( < 0.05) in composted than in stockpiled manure. We conclude that composting may be more effective than stockpiling in reducing the introduction of antimicrobial resistance genes into the environment before land application of manure.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Manure , Tetracycline Resistance/genetics , Animals , Cattle , RNA, Ribosomal, 16S , Red Meat
12.
Sci Total Environ ; 521-522: 191-9, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25839178

ABSTRACT

Veterinary antimicrobials are introduced to wider environments by manure application to agricultural fields or through leaching or runoff from manure storage areas (feedlots, stockpiles, windrows, lagoons). Detected in manure, manure-treated soils, and surface and ground water near intensive cattle feeding operations, there is a concern that environmental contamination by these chemicals may promote the development of antimicrobial resistance in bacteria. Surface runoff and leaching appear to be major transport pathways by which veterinary antimicrobials eventually contaminate surface and ground water, respectively. A study was conducted to investigate the transport of three veterinary antimicrobials (chlortetracycline, sulfamethazine, tylosin), commonly used in beef cattle production, in simulated rainfall runoff from feedlot pens. Mean concentrations of veterinary antimicrobials were 1.4 to 3.5 times higher in surface material from bedding vs. non-bedding pen areas. Runoff rates and volumetric runoff coefficients were similar across all treatments but both were significantly higher from non-bedding (0.53Lmin(-1); 0.27) than bedding areas (0.40Lmin(-1); 0.19). In keeping with concentrations in pen surface material, mean concentrations of veterinary antimicrobials were 1.4 to 2.5 times higher in runoff generated from bedding vs. non-bedding pen areas. Water solubility and sorption coefficient of antimicrobials played a role in their transport in runoff. Estimated amounts of chlortetracycline, sulfamethazine, and tylosin that could potentially be transported to the feedlot catch basin during a one in 100-year precipitation event were 1.3 to 3.6ghead(-1), 1.9ghead(-1), and 0.2ghead(-1), respectively. This study demonstrates the magnitude of veterinary antimicrobial transport in feedlot pen runoff and supports the necessity of catch basins for runoff containment within feedlots.


Subject(s)
Anti-Infective Agents/analysis , Environmental Monitoring , Soil Pollutants/analysis , Veterinary Drugs/analysis , Animals , Chlortetracycline/analysis , Manure/analysis , Rain , Soil/chemistry , Sulfamethazine/analysis , Tylosin/analysis , Water Pollutants, Chemical/analysis
13.
J Environ Qual ; 43(2): 549-57, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25602656

ABSTRACT

Veterinary antimicrobials in land-applied manure can move to surface waters via rain or snowmelt runoff, thus increasing their dispersion in agro-environments. This study quantified losses of excreted chlortetracycline, sulfamethazine, and tylosin in simulated rain runoff from surface-applied and soil-incorporated beef cattle ( L.) feedlot manure (60 Mg ha, wet wt.). Antimicrobial concentrations in runoff generally reflected the corresponding concentrations in the manure. Soil incorporation of manure reduced the concentrations of chlortetracycline (from 75 to 12 µg L for a 1:1 mixture of chlortetracycline and sulfamethazine and from 43 to 17 µg L for chlortetracycline alone) and sulfamethazine (from 3.9 to 2.6 µg L) in runoff compared with surface application. However, there was no significant effect of manure application method on tylosin concentration (range, 0.02-0.06 µg L) in runoff. Mass losses, as a percent of the amount applied, for chlortetracycline and sulfamethazine appeared to be independent of their respective soil sorption coefficients. Mass losses of chlortetracycline were significantly reduced with soil incorporation of manure (from 6.5 to 1.7% when applied with sulfamethazine and from 6.5 to 3.5% when applied alone). Mass losses of sulfamethazine (4.8%) and tylosin (0.24%) in runoff were not affected by manure incorporation. Although our results confirm that cattle-excreted veterinary antimicrobials can be removed via surface runoff after field application, the magnitudes of chlortetracycline and sulfamethazine losses were reduced by soil incorporation of manure immediately after application.

14.
J Environ Qual ; 43(2): 671-80, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25602668

ABSTRACT

Manure composting has become commonplace in the beef cattle ( L.) feedlot industry in Alberta. However, the nitrogen (N) and phosphorus (P) characteristics of runoff from windrows subjected to heavy rainfall at different compost maturities are unknown. On Days 18, 26, 40, 54, 81, 109, and 224 of composting, a rainfall simulator generated runoff, which was collected in timed 5-L increments, creating the variable "time during runoff event" (TDRE). The volumetric runoff coefficient of windrows increased from 24% of incident rainfall on Day 0 to 69% by Day 90. Ammonium-nitrogen showed a significant maturity × TDRE interaction on Day 18, increasing from 46 mg L for the 0- to 5-L increment to 172 mg L for the 25- to 30-L increment, as did total dissolved phosphorus (TDP), increasing from 36 to 61 mg L. Nitrate-nitrogen had a runoff export coefficient of 19.5 mg m min on Day 224, which was significantly higher than 1.8 to 6.3 mg m min on Days 18 to 54. Across the 224-d composting period, compost NO-N concentration explained 87% of runoff NO-N, whereas compost water-soluble P explained 68% of runoff TDP. The occurrence and duration of rainfall events relative to the compost maturity spectrum has implications for the magnitude of N and P mobility and overall nutrient losses.

15.
J Environ Qual ; 43(3): 1061-70, 2014 May.
Article in English | MEDLINE | ID: mdl-25602835

ABSTRACT

Dissipation of veterinary antimicrobials is known to occur during aerated windrow composting of beef cattle manure. However, it is unclear if a similar dissipation occurs during stockpiling. Chlortetracycline, tylosin, and sulfamethazine are three of the most commonly used veterinary antimicrobials in beef cattle production in western Canada. Their dissipation in stockpiled manure was investigated over 140 d during winter in Alberta, Canada. Beef cattle housed in pens were administered 44 mg of chlortetracycline kg feed (dry weight), 44 mg of chlortetracycline + 44 mg sulfamethazine kg feed, 11 mg of tylosin kg feed, or feed without antimicrobials (control). Manure samples were extracted using pressurized liquid extraction, and the extracts were analyzed for chlortetracycline, sulfamethazine, and tylosin by LC-MS-MS. Dissipation of all three antimicrobials in the manure was explained by exponential decay kinetics. Times for 50% dissipation (DT) were 1.8 ± 0.1 d for chlortetracycline alone or 6.0 ± 0.8 d when mixed with sulfamethazine, 20.8 ± 3.8 d for sulfamethazine, and 4.7 ± 1.2 d for tylosin. After 77 d, <1% of initial chlortetracycline and <2% of sulfamethazine remained. Tylosin residues were more variable, decreasing to approximately 12% of initial levels after 28 d, with 20% present after 77 d and 13% after 140 d. Temperatures within stockpiles reached maximum values within 6 d of establishment and varied with location (bottom, 62.5°C; middle, 63.8°C; and top, 42.9°C). Antimicrobials in the manure did not inhibit microbial activity, as indicated by temperature and mass losses of carbon (C) and nitrogen (N). The C/N ratio in the manure decreased over the stockpiling period, indicating decomposition of manure to a more stable state. Dissipation of excreted residues with DT values 1.8 to 20.8 d showed that stockpiling can be as effective as windrow composting in mitigating the transfer of these three veterinary antimicrobials into the environment during land application of processed manure.

16.
J Environ Qual ; 43(5): 1799-808, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25603264

ABSTRACT

With increased availability of dried distillers' grains with solubles (DDGS) as cattle feed and the need to recycle organic wastes, this research investigated the feasibility of co-composting DDGS cattle feedlot manure with construction and demolition (C&D) waste. Manure was collected from cattle fed a typical western Canadian finishing diet (CK) of 860 g rolled barley ( L.) grain, 100 g barley silage, and 40 g vitamin and mineral supplement kg dry matter (DM) and from cattle fed the same diet but (DG manure) with 300 g kg DM barley grain being replaced by DDGS. The CK and DG manures were co-composted with and without C&D waste in 13 m bins. Compost materials were turned on Days 14, 37, and 64, and terminated on Day 99. Adding C&D waste led to higher compost temperatures (0.4 to 16.3°C, average 7.2°C) than manure alone. Final composts had similar total C, total N, C/N ratios, and water-extractable K, Mg, and NO content across all treatments. However, adding C&D waste increased δC, δN, water-extractable SO, and Ca contents and decreased pH, total P (TP), water-extractable C, N, and P and most volatile fatty acids (VFA). The higher C&D compost temperatures should reduce pathogens while reduced VFA content should reduce odors. When using the final compost product, the increased SO and reduced TP and available N and P content in C&D waste compost should be taken into consideration. Increased S content in C&D compost may be beneficial for some crops grown on S-deficient soils.

17.
J Environ Qual ; 40(1): 199-205, 2011.
Article in English | MEDLINE | ID: mdl-21488508

ABSTRACT

Composting is the controlled biological decomposition of organic matter by microorganisms during predominantly aerobic conditions. It is being increasingly adopted due to its benefits in nutrient recycling, soil reclamation, and urban land use. However, it poses an environmental concern related to its contribution to greenhouse gas production. During composting, activities of methanogenic and methanotrophic communities influence the net methane (CH4) release into the atmosphere. Using quantitative polymerase chain reaction (qPCR), this study was aimed at assessing the changes in the methyl-coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) copy numbers for estimation of methanogenic and methanotrophic communities, respectively. Open-windrow composting of beef cattle (Bos Taurus L.) manure with temperatures reaching > 55 degrees C was effective indegrading commensal Escherichia coli within the first week. Quantification of community DNA revealed significant differences in mcrA and pmoA copy numbers between top and middle sections. Consistent mcrA copy numbers (7.07 to 8.69 log copy number g(-1)) were detected throughout the 15-wk composting period. However, pmoA copy number varied significantly over time, with higher values during Week 0 and 1 (6.31 and 5.41 log copy number g(-1), respectively) and the lowest at Week 11 (1.6 log copy number g(-1)). Net surface CH4 emissions over the 15-wk period were correlated with higher mcrA copy number. Higher net ratio of mrA: pmoA copy numbers was observed when surface CH4 flux was high. Our results indicate that mcrA and pmoA copy numbers vary during composting and that methanogen and methanotroph populations need to be examined in conjunction with net CH4 emissions from open-windrow composting of cattle feedlot manure.


Subject(s)
Cattle , Euryarchaeota/enzymology , Manure , Mixed Function Oxygenases/metabolism , Oxidoreductases/metabolism , Soil , Animals , Escherichia coli , Mixed Function Oxygenases/genetics , Oxidoreductases/genetics , Refuse Disposal , Time Factors
18.
J Environ Qual ; 40(1): 188-98, 2011.
Article in English | MEDLINE | ID: mdl-21488507

ABSTRACT

Composting of manure may lead to the degradation of veterinary antimicrobials, but it is largely unknown if the presence of antimicrobials affects the composting process. Open-air windrow composting of manure from beef cattle (Bos taurus) administered chlortetracycline, sulfamethazine, and tylosin was investigated in a 2-yr study. At windrow construction, chlortetracycline had extensively isomerized to iso-chlortetracycline. Sulfamethazine, tylosin, and iso-chlortetracycline dissipated by first-order kinetics, whereas the dissipation of enol/keto-chlortetracycline was better described by exponential equations. At the end of the composting period, proportions of antimicrobials remaining were as follows: iso-chlortetracycline (< 1%), chlortetracycline (1 to 4.5%), tylosin (6.3%), and sulfamethazine (6.8% [2005], 41% [2006]). Times for 50% dissipation (DT50) decreased in the order: tylosin (20.3 to 43.5 d) > iso-chlortetracycline (13.5 to 26.5 d) > enol/keto-chlortetracycline (5.5 to 9.8 d). The DT50 values for sulfamethazine varied from 26.8 d in 2005 to 237 d in 2006. Treatments with chlortetracycline showed significantly reduced temperature rises (10.1 to 11.0 degrees C) between Days 21 to 28 in 2006 compared with rises of 26.6 to 31.0 degrees C for control and tylosin treatments, suggesting an inhibition of microbial activity. During composting in 2005, manure from cattle administered chlortetracycline at 44 mg kg(-1) of feed lost significantly less dry matter, carbon, and nitrogen than manure from cattle fed 11 mg chlortetracycline kg(-1) of feed, implying that the higher level of chlortetracycline inhibited microbial decomposition of organic matter. The study shows that while composting leads to dissipation of antimicrobials, the microbially driven composting process may be inhibited by their presence.


Subject(s)
Anti-Bacterial Agents/chemistry , Cattle , Manure/analysis , Soil , Veterinary Drugs/analysis , Animals , Environmental Monitoring , Environmental Pollutants/chemistry , Housing, Animal , Refuse Disposal , Time Factors , Weather
19.
J Vis Exp ; (39)2010 May 06.
Article in English | MEDLINE | ID: mdl-20461054

ABSTRACT

Intensive livestock production systems are particularly vulnerable to natural or intentional (bioterrorist) infectious disease outbreaks. Large numbers of animals housed within a confined area enables rapid dissemination of most infectious agents throughout a herd. Rapid containment is key to controlling any infectious disease outbreak, thus depopulation is often undertaken to prevent spread of a pathogen to the larger livestock population. In that circumstance, a large number of livestock carcasses and contaminated manure are generated that require rapid disposal. Composting lends itself as a rapid-response disposal method for infected carcasses as well as manure and soil that may harbor infectious agents. We designed a bio-contained mortality composting procedure and tested its efficacy for bovine tissue degradation and microbial deactivation. We used materials available on-farm or purchasable from local farm supply stores in order that the system can be implemented at the site of a disease outbreak. In this study, temperatures exceeded 55 degrees C for more than one month and infectious agents implanted in beef cattle carcasses and manure were inactivated within 14 days of composting. After 147 days, carcasses were almost completely degraded. The few long bones remaining were further degraded with an additional composting cycle in open windrows and the final mature compost was suitable for land application. Duplicate compost structures (final dimensions 25 m x 5 m x 2.4 m; L x W x H) were constructed using barley straw bales and lined with heavy black silage plastic sheeting. Each was loaded with loose straw, carcasses and manure totaling approximately 95,000 kg. A 40-cm base layer of loose barley straw was placed in each bunker, onto which were placed 16 feedlot cattle mortalities (average weight 343 kg) aligned transversely at a spacing of approximately 0.5 m. For passive aeration, lengths of flexible, perforated plastic drainage tubing (15 cm diameter) were placed between adjacent carcasses, extending vertically along both inside walls, and with the ends passed though the plastic to the exterior. The carcasses were overlaid with moist aerated feedlot manure (approximately 1.6 m deep) to the top of the bunker. Plastic was folded over the top and sealed with tape to establish a containment barrier and eight aeration vents (50 x 50 x 15 cm) were placed on the top of each structure to promote passive aeration. After 147 days, losses of volume and mass of composted materials averaged 39.8% and 23.7%, respectively, in each structure.


Subject(s)
Animal Diseases/prevention & control , Animal Husbandry/methods , Animals, Domestic/microbiology , Disease Outbreaks/veterinary , Soil , Animal Diseases/epidemiology , Animal Diseases/transmission , Animals , Cattle , Manure/microbiology
20.
Appl Environ Microbiol ; 76(4): 1110-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20023098

ABSTRACT

The persistence of naturally occurring campylobacteria in aerobic compost constructed of manure from beef cattle that were administered chlortetracycline and sulfamethazine (AS700) or from cattle not administered antibiotics (control) was examined. Although there were no differences in population sizes of heterotrophic bacteria, the temperature of AS700 compost was more variable and did not become as high as that of control compost. There were significant differences in water content, total carbon (C), total nitrogen (N), and electrical conductivity but not in the C/N ratio or pH between the two compost treatments. Campylobacteria were readily isolated from pen manure, for up to day 15 from control compost, and throughout the active phase of AS700 compost. Campylobacter DNA (including Campylobacter coli, Campylobacter fetus, Campylobacter hyointestinalis, and Campylobacter jejuni) was detected over the ca. 10-month composting period, and no reductions in quantities of C. jejuni DNA were observed over the duration of the active phase. The utilization of centrifugation in combination with ethidium monoazide (EMA) significantly reduced (>90%) the amplification of C. jejuni DNA that did not originate from cells with intact cell membranes. No differences were observed in the frequency of Campylobacter DNA detection between EMA- and non-EMA-treated samples, suggesting that Campylobacter DNA amplified from compost was extracted from cells with intact cell membranes (i.e., from viable cells). The findings of this study indicate that campylobacteria excreted in cattle feces persist for long periods in compost and call into question the common belief that these bacteria do not persist in manure.


Subject(s)
Campylobacter/isolation & purification , Cattle/microbiology , Manure/microbiology , Microbial Viability , Animals , Azides , Campylobacter/genetics , Campylobacter/pathogenicity , Campylobacter Infections/transmission , Centrifugation , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Humans , In Vitro Techniques , Polymerase Chain Reaction , Soil Microbiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...