Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 53(11): 5609-18, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24819938

ABSTRACT

The synthesis and crystal structure evolution of the double perovskite Pb2YSbO6 is reported for the first time. The structure has been analyzed in the temperature range between 100 and 500 K by using a combination of synchrotron and neutron powder diffraction. This compound shows two consecutive first order phase transformations as previously observed for a subgroup of Pb2RSbO6 perovkites (R = rare earths). The thermodynamic parameters associated with the phase transitions were calculated using differential scanning calorimetry (DSC), and the role of the diverse cations of the structure was studied from DFT calculations for the room temperature polymorph. The crystal structure evolves from a C2/c monoclinic structure (a(-)b(-)b(-) tilting system in Glazer's notation) to another monoclinic P2(1)/n (a(-)a(-)b(+)) phase with an incommensurate modulation and finally to a cubic Fm3m perovskite (a(0)a(0)a(0)). The highly distorted nature of the room temperature crystal structure seems to be driven by the polarization of the Pb lone pair which shows a marked local effect in the atomic spatial arrangements. Moreover, the lone pairs have been localized from DFT calculations and show an antiferroelectric ordering along the b monoclinic axis.

2.
Inorg Chem ; 53(9): 4281-3, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24716725

ABSTRACT

The search for new double-perovskite oxides has grown rapidly in recent years because of their interesting physical properties like ferroelectricity, magnetism, and multiferroics. The synthesis of double perovskites, especially the A-site-ordered perovskites, in most cases needs to be made under high pressure, which is a drawback for applying these materials. Here we have demonstrated synthetic routes at ambient pressure by which we have obtained a high-quality duo-sites-ordered double perovskite, CaCu3Fe2Sb2O12, which has been previously synthesized under high pressure. The availability of a large quantity of the powder sample allows us to determine the crystal and magnetic structures by neutron powder diffraction (NPD) at 300 and 1.3 K. Measurements of the magnetization and heat capacity showed a ferrimagnetic transition at 160 K. A ferrimagnetic structure consisting of the uncompensated antiferromagnetic coupling between neighboring collinear copper and iron spins has been resolved from the low-temperature NPD data.

3.
Inorg Chem ; 52(4): 2138-41, 2013 Feb 18.
Article in English | MEDLINE | ID: mdl-23350864

ABSTRACT

A new Bi(3)Ge(3)O(10.5) compound has been synthesized under high pressure, P = 7 GPa, and 700 °C. Instead of the pyrochlore that is normally stabilized under high pressure, the Bi(3)Ge(3)O(10.5) crystallizes in a KSbO(3)-ype crystal structure. The crystal structure has been refined by the Rietveld method from synchrotron X-ray diffraction data. Moreover, we have also characterized the Bi(3)Ge(3)O(10.5) by X-ray photoelectron spectroscopy, photoluminescence, and specific heat.

4.
Inorg Chem ; 50(12): 5545-57, 2011 Jun 20.
Article in English | MEDLINE | ID: mdl-21618974

ABSTRACT

The synthesis, crystal structure, and dielectric properties of four novel members of the family of double perovskites Pb(2)LnSbO(6) are described. The room-temperature crystal structures were refined from neutron powder diffraction (NPD) data in the monoclinic C2/c (No. 15) space group. They contain a completely ordered array of alternating LnO(6) and SbO(6) octahedra sharing corners, tilted in antiphase along the three pseudocubic axes, with a a(-)b(-)b(-) tilting scheme, which is very unusual in the crystallochemistry of perovskites. The lead atoms occupy highly asymmetric voids with 8-fold coordination due to the stereoactivity of the Pb(2+) electron lone-pair. Several trends are observed for the entire family of compounds upon heating. The Ln = Lu, Yb, and Er oxides display three successive phase transitions in a narrow temperature range, as shown by differential scanning calorimetry (DSC) data, while the Ln = Ho shows only two transitions. Different crystal structure evolutions have been found from temperature-dependent NPD and DSC, following the space-group sequence C2/c → P2(1)/n → R ̅3 → Fm ̅3m for Ln = Lu and Yb, the sequence C2/c → unknown → P2(1)/n → Fm ̅3m for Ln = Er, and C2/c → P2(1)/n → Fm ̅3m for Ln = Ho. The Ln/Sb long-range ordering is preserved across the consecutive phase transitions. Dielectric permittivity measurements indicate the presence of a paraelectric/antiferroelectric transition (associated with the last structural transition), as suggested by the negative Curie temperature from the Curie-Weiss fit of the reciprocal permittivity.


Subject(s)
Antimony/chemistry , Lanthanoid Series Elements/chemistry , Lead/chemistry , Oxygen/chemistry , Temperature , Models, Molecular
5.
J Am Chem Soc ; 132(41): 14470-80, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20866041

ABSTRACT

The synthesis, crystal structure, and dielectric properties of the novel double perovskite Pb(2)TmSbO(6) are described. The room-temperature crystal structure was determined by ab initio procedures from neutron powder diffraction (NPD) and synchrotron X-ray powder diffraction (SXRPD) data in the monoclinic C2/c (No. 15) space group. This double perovskite contains a completely ordered array of alternating TmO(6) and SbO(6) octahedra sharing corners, tilted in antiphase along the three pseudocubic axes, with an a(-)b(-)b(-) tilting scheme, which is very unusual in the crystallochemistry of perovskites. The lead atoms occupy a highly asymmetric void with 8-fold coordination due to the stereoactivity of the Pb(2+) lone electron pair. This compound presents three successive phase transitions in a narrow temperature range (at T1 = 385 K, T2 = 444 K, and T3 = 460 K in the heating run) as shown by differential scanning calorimetry (DSC) data. The crystal structure and temperature-dependent NPD follow the space-group sequence C2/c → P2(1)/n → R3 → Fm3m. This is a novel polymorph succession in the high-temperature evolution of perovskite-type oxides. The Tm/Sb long-range ordering is preserved across the consecutive phase transitions. Dielectric permittivity measurements indicate the presence of a paraelectric/antiferroelectric transition (associated with the last structural transition), as suggested by the negative Curie temperature obtained from the Curie-Weiss fit of the reciprocal permittivity.

6.
Dalton Trans ; (28): 5453-9, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19587987

ABSTRACT

The new double perovskite Pb2ScSbO6 was synthesized by standard ceramic procedures; the Rietveld refinement of room temperature neutron powder diffraction data shows that the crystal structure is well defined in the space group Fm3[combining macron]m. It contains a completely ordered array of alternating ScO6 and SbO6 octahedra sharing corners; the PbO12 polyhedra present an off-center displacement of the lead atoms along the [111] direction, due to the electrostatic repulsion between the Pb2+ 6s lone pair and the Pb-O bonds of the cuboctahedron. Dielectric permittivity measurements show a peak near 343 K, with a Curie-Weiss response above this temperature, which suggests an antiferroelectric behavior. Finally we present a DFT study of the electronic structure of Pb2ScSbO6, showing a great difference between the electronic density within SbO6 and ScO6 octahedra.

SELECTION OF CITATIONS
SEARCH DETAIL
...