Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
J Pharmacol Exp Ther ; 373(1): 24-33, 2020 04.
Article in English | MEDLINE | ID: mdl-31907305

ABSTRACT

Neurodevelopmental disorder with involuntary movements (Online Mendelian Inheritance in Man: 617493) is a severe, early onset neurologic condition characterized by a delay in psychomotor development, hypotonia, and hyperkinetic involuntary movements. Heterozygous de novo mutations in the GNAO1 gene cause neurodevelopmental disorder with involuntary movements. Gα o, the gene product of GNAO1, is the alpha subunit of Go, a member of the heterotrimeric Gi/o family of G proteins. Go is found abundantly throughout the brain, but the pathophysiological mechanisms linking Gα o functions to clinical manifestations of GNAO1-related disorders are still poorly understood. One of the most common mutant alleles among the GNAO1 encephalopathies is the c.626G>A or p.Arg209His (R209H) mutation. We developed heterozygous knock-in Gnao1 +/R209H mutant mice using CRISPR/Cas9 methodology to assess whether a mouse model could replicate aspects of the neurodevelopmental disorder with involuntary movements clinical pattern. Mice carrying the R209H mutation exhibited increased locomotor activity and a modest gait abnormality at 8-12 weeks. In contrast to mice carrying other mutations in Gnao1, the Gnao1 +/R209H mice did not show enhanced seizure susceptibility. Levels of protein expression in multiple brain regions were unchanged from wild-type (WT) mice, but the nucleotide exchange rate of mutant R209H Gα o was 6.2× faster than WT. The atypical neuroleptic risperidone has shown efficacy in a patient with the R209H mutation. It also alleviated the hyperlocomotion phenotype observed in our mouse model but suppressed locomotion in WT mice as well. In this study, we show that Gnao1 +/R209H mice mirror elements of the patient phenotype and respond to an approved pharmacological agent. SIGNIFICANCE STATEMENT: Children with de novo mutations in the GNAO1 gene may present with movement disorders with limited effective therapeutic options. The most common mutant variant seen in children with GNAO1-associated movement disorder is R209H. Here we show, using a novel Gnao1 +/R209H mouse, that there is a clear behavioral phenotype that is suppressed by risperidone. However, risperidone also affects wild-type mouse activity, so its effects are not selective for the GNAO1-associated movement disorder.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Genetic Variation/genetics , Movement Disorders/drug therapy , Movement Disorders/genetics , Risperidone/therapeutic use , Animals , Base Sequence , Dopamine Antagonists/pharmacology , Dopamine Antagonists/therapeutic use , Female , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Risperidone/pharmacology
3.
PLoS One ; 14(1): e0211066, 2019.
Article in English | MEDLINE | ID: mdl-30682176

ABSTRACT

BACKGROUND: Infants and children with dominant de novo mutations in GNAO1 exhibit movement disorders, epilepsy, or both. Children with loss-of-function (LOF) mutations exhibit Epileptiform Encephalopathy 17 (EIEE17). Gain-of-function (GOF) mutations or those with normal function are found in patients with Neurodevelopmental Disorder with Involuntary Movements (NEDIM). There is no animal model with a human mutant GNAO1 allele. OBJECTIVES: Here we develop a mouse model carrying a human GNAO1 mutation (G203R) and determine whether the clinical features of patients with this GNAO1 mutation, which includes both epilepsy and movement disorder, would be evident in the mouse model. METHODS: A mouse Gnao1 knock-in GOF mutation (G203R) was created by CRISPR/Cas9 methods. The resulting offspring and littermate controls were subjected to a battery of behavioral tests. A previously reported GOF mutant mouse knock-in (Gnao1+/G184S), which has not been found in patients, was also studied for comparison. RESULTS: Gnao1+/G203R mutant mice are viable and gain weight comparably to controls. Homozygotes are non-viable. Grip strength was decreased in both males and females. Male Gnao1+/G203R mice were strongly affected in movement assays (RotaRod and DigiGait) while females were not. Male Gnao1+/G203R mice also showed enhanced seizure propensity in the pentylenetetrazole kindling test. Mice with a G184S GOF knock-in also showed movement-related behavioral phenotypes but females were more strongly affected than males. CONCLUSIONS: Gnao1+/G203R mice phenocopy children with heterozygous GNAO1 G203R mutations, showing both movement disorder and a relatively mild epilepsy pattern. This mouse model should be useful in mechanistic and preclinical studies of GNAO1-related movement disorders.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go , Movement Disorders , Mutation, Missense , Amino Acid Substitution , Animals , Disease Models, Animal , Epilepsy/genetics , Epilepsy/metabolism , Epilepsy/pathology , Epilepsy/physiopathology , Female , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Hand Strength , Humans , Male , Mice , Mice, Transgenic , Movement Disorders/genetics , Movement Disorders/metabolism , Movement Disorders/pathology , Movement Disorders/physiopathology
4.
J Vis Exp ; (128)2017 10 10.
Article in English | MEDLINE | ID: mdl-29053700

ABSTRACT

The presence of bacteria as structured biofilms in chronic wounds, especially in diabetic patients, is thought to prevent wound healing and resolution. Chronic mouse wounds models have been used to understand the underlying interactions between the microorganisms and the host. The models developed to date rely on the use of haired animals and terminal collection of wound tissue for determination of viable bacteria. While significant insight has been gained with these models, this experimental procedure requires a large number of animals and sampling is time consuming. We have developed a novel murine model that incorporates several optimal innovations to evaluate biofilm progression in chronic wounds: a) it utilizes hairless mice, eliminating the need for hair removal; b) applies pre-formed biofilms to the wounds allowing for the immediate evaluation of persistence and effect of these communities on host; c) monitors biofilm progression by quantifying light production by a genetically engineered bioluminescent strain of Pseudomonas aeruginosa, allowing real-time monitoring of the infection thus reducing the number of animals required per study. In this model, a single full-depth wound is produced on the back of STZ-induced diabetic hairless mice and inoculated with biofilms of the P. aeruginosa bioluminescent strain Xen 41. Light output from the wounds is recorded daily in an in vivo imaging system, allowing for in vivo and in situ rapid biofilm visualization and localization of biofilm bacteria within the wounds. This novel method is flexible as it can be used to study other microorganisms, including genetically engineered species and multi-species biofilms, and may be of special value in testing anti-biofilm strategies including antimicrobial occlusive dressings.


Subject(s)
Biofilms/drug effects , Pseudomonas Infections/microbiology , Wound Infection/etiology , Animals , Diabetes Mellitus, Experimental , Disease Models, Animal , Humans , Mice , Pseudomonas aeruginosa/drug effects , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...